Targeting retroviral and retrotransposon insertions

(Xie, Gai et al. 2001; Gorinsek, Gubensek et al. 2004; Bachman, Gelbart et al. 2005; Ciuffi, Llano et al. 2005; Hizi and Levin 2005; Kordis 2005; Vanegas, Llano et al. 2005; Barr, Ciuffi et al. 2006; Ciuffi and Bushman 2006; Ciuffi, Diamond et al. 2006; Lewinski, Yamashita et al. 2006; Llano, Saenz et al. 2006; Mou, Kenny et al. 2006; Dai, Xie et al. 2007; Neumann, Yan et al. 2007; Wang, Ciuffi et al. 2007; Brady, Schmidt et al. 2008; Ciuffi 2008; Gao, Hou et al. 2008; Chatterjee, Leem et al. 2009; Ciuffi, Ronen et al. 2009; Ciuffi, Ronen et al. 2009; Wolfgruber, Sharma et al. 2009; Ciuffi and Barr 2010; Desfarges and Ciuffi 2010; Gijsbers, Ronen et al. 2010; Meehan and Poeschla 2010; Zheng, Ao et al. 2010; Baller, Gao et al. 2011; Blus, Wiggins et al. 2011; Neumann, Navratilova et al. 2011; Yap and Zhou 2011; Baller, Gao et al. 2012; Birchler and Presting 2012; Bridier-Nahmias and Lesage 2012; Eissenberg 2012; Mularoni, Zhou et al. 2012; Novikov, Smyshlyaev et al. 2012; Tsukahara, Kawabe et al. 2012; Zhang and Mager 2012; Christ and Debyser 2013; De Rijck, de Kogel et al. 2013; Gupta, Maetzig et al. 2013; Sharma, Larue et al. 2013; Sharma, Wolfgruber et al. 2013; Weber, Heitkam et al. 2013)

 

REFERENCES

 

Bachman, N., M. E. Gelbart, et al. (2005). "TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs." Genes Dev 19(8): 955-964. http://www.ncbi.nlm.nih.gov/pubmed/15833918.

Baller, J. A., J. Gao, et al. (2012). "A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon." Genome Res 22(4): 704-713. http://www.ncbi.nlm.nih.gov/pubmed/22219511.

Baller, J. A., J. Gao, et al. (2011). "Access to DNA establishes a secondary target site bias for the yeast retrotransposon Ty5." Proc Natl Acad Sci U S A 108(51): 20351-20356. http://www.ncbi.nlm.nih.gov/pubmed/21788500.

Barr, S. D., A. Ciuffi, et al. (2006). "HIV integration site selection: targeting in macrophages and the effects of different routes of viral entry." Mol Ther 14(2): 218-225. http://www.ncbi.nlm.nih.gov/pubmed/16647883.

Birchler, J. A. and G. G. Presting (2012). "Retrotransposon insertion targeting: a mechanism for homogenization of centromere sequences on nonhomologous chromosomes." Genes Dev 26(7): 638-640. http://www.ncbi.nlm.nih.gov/pubmed/22474258.

Blus, B. J., K. Wiggins, et al. (2011). "Epigenetic virtues of chromodomains." Crit Rev Biochem Mol Biol 46(6): 507-526. http://www.ncbi.nlm.nih.gov/pubmed/22023491.

Brady, T. L., C. L. Schmidt, et al. (2008). "Targeting integration of the Saccharomyces Ty5 retrotransposon." Methods Mol Biol 435: 153-163. http://www.ncbi.nlm.nih.gov/pubmed/18370074.

Bridier-Nahmias, A. and P. Lesage (2012). "Two large-scale analyses of Ty1 LTR-retrotransposon de novo insertion events indicate that Ty1 targets nucleosomal DNA near the H2A/H2B interface." Mob DNA 3(1): 22. http://www.ncbi.nlm.nih.gov/pubmed/23244340.

Chatterjee, A. G., Y. E. Leem, et al. (2009). "The chromodomain of Tf1 integrase promotes binding to cDNA and mediates target site selection." J Virol 83(6): 2675-2685. http://www.ncbi.nlm.nih.gov/pubmed/19109383.

Christ, F. and Z. Debyser (2013). "The LEDGF/p75 integrase interaction, a novel target for anti-HIV therapy." Virology 435(1): 102-109. http://www.ncbi.nlm.nih.gov/pubmed/23217620.

Ciuffi, A. (2008). "Mechanisms governing lentivirus integration site selection." Curr Gene Ther 8(6): 419-429. http://www.ncbi.nlm.nih.gov/pubmed/19075625.

Ciuffi, A. and S. D. Barr (2010). "Identification of HIV integration sites in infected host genomic DNA." Methods. http://www.ncbi.nlm.nih.gov/pubmed/20385239%22.

Ciuffi, A. and F. D. Bushman (2006). "Retroviral DNA integration: HIV and the role of LEDGF/p75." Trends Genet 22(7): 388-395. http://www.ncbi.nlm.nih.gov/pubmed/16730094.

Ciuffi, A., T. L. Diamond, et al. (2006). "Modulating target site selection during human immunodeficiency virus DNA integration in vitro with an engineered tethering factor." Hum Gene Ther 17(9): 960-967. http://www.ncbi.nlm.nih.gov/pubmed/16972764.

Ciuffi, A., M. Llano, et al. (2005). "A role for LEDGF/p75 in targeting HIV DNA integration." Nat Med 11(12): 1287-1289. http://www.ncbi.nlm.nih.gov/pubmed/16311605.

Ciuffi, A., K. Ronen, et al. (2009). "Methods for integration site distribution analyses in animal cell genomes." Methods 47(4): 261-268. .

Ciuffi, A., K. Ronen, et al. (2009). "Methods for integration site distribution analyses in animal cell genomes." Methods 47(4): 261-268. http://www.ncbi.nlm.nih.gov/pubmed/19038346.

Dai, J., W. Xie, et al. (2007). "Phosphorylation regulates integration of the yeast Ty5 retrotransposon into heterochromatin." Mol Cell 27(2): 289-299. http://www.ncbi.nlm.nih.gov/pubmed/17643377.

De Rijck, J., C. de Kogel, et al. (2013). "The BET family of proteins targets moloney murine leukemia virus integration near transcription start sites." Cell Rep 5(4): 886-894. http://www.ncbi.nlm.nih.gov/pubmed/24183673.

Desfarges, S. and A. Ciuffi (2010). "Retroviral Integration Site Selection." Viruses 2: 111-130. .

Eissenberg, J. C. (2012). "Structural biology of the chromodomain: form and function." Gene 496(2): 69-78. http://www.ncbi.nlm.nih.gov/pubmed/22285924.

Gao, X., Y. Hou, et al. (2008). "Chromodomains direct integration of retrotransposons to heterochromatin." Genome Res 18(3): 359-369. http://www.ncbi.nlm.nih.gov/pubmed/18256242.

Gijsbers, R., K. Ronen, et al. (2010). "LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin." Mol Ther\ 18\(3\): 552-560\. http://www.ncbi.nlm.nih.gov/pubmed/20195265%22.

Gorinsek, B., F. Gubensek, et al. (2004). "Evolutionary genomics of chromoviruses in eukaryotes." Mol Biol Evol 21(5): 781-798. http://www.ncbi.nlm.nih.gov/pubmed/14739248.

Gupta, S. S., T. Maetzig, et al. (2013). "Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration." J Virol 87(23): 12721-12736. http://www.ncbi.nlm.nih.gov/pubmed/24049186.

Hizi, A. and H. L. Levin (2005). "The integrase of the long terminal repeat-retrotransposon tf1 has a chromodomain that modulates integrase activities." J Biol Chem 280(47): 39086-39094. http://www.ncbi.nlm.nih.gov/pubmed/16188891.

Kordis, D. (2005). "A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses." Gene 347(2): 161-173. http://www.ncbi.nlm.nih.gov/pubmed/15777633.

Lewinski, M. K., M. Yamashita, et al. (2006). "Retroviral DNA integration: viral and cellular determinants of target-site selection." PLoS Pathog 2(6): e60. http://www.ncbi.nlm.nih.gov/pubmed/16789841.

Llano, M., D. T. Saenz, et al. (2006). "An essential role for LEDGF/p75 in HIV integration." Science 314(5798): 461-464. http://www.ncbi.nlm.nih.gov/pubmed/16959972.

Meehan, A. M. and E. M. Poeschla (2010). "Chromatin tethering and retroviral integration: recent discoveries and parallels with DNA viruses." Biochim Biophys Acta 1799(3-4): 182-191. http://www.ncbi.nlm.nih.gov/pubmed/19836475.

Mou, Z., A. E. Kenny, et al. (2006). "Hos2 and Set3 promote integration of Ty1 retrotransposons at tRNA genes in Saccharomyces cerevisiae." Genetics 172(4): 2157-2167. http://www.ncbi.nlm.nih.gov/pubmed/16415356.

Mularoni, L., Y. Zhou, et al. (2012). "Retrotransposon Ty1 integration targets specifically positioned asymmetric nucleosomal DNA segments in tRNA hotspots." Genome Res 22(4): 693-703. http://www.ncbi.nlm.nih.gov/pubmed/22219510.

Neumann, P., A. Navratilova, et al. (2011). "Plant centromeric retrotransposons: a structural and cytogenetic perspective." Mob DNA 2(1): 4. http://www.ncbi.nlm.nih.gov/pubmed/21371312.

Neumann, P., H. Yan, et al. (2007). "The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference." Genetics 176(2): 749-761. http://www.ncbi.nlm.nih.gov/pubmed/17409063.

Novikov, A., G. Smyshlyaev, et al. (2012). "Evolutionary history of LTR retrotransposon chromodomains in plants." Int J Plant Genomics 2012: 874743. http://www.ncbi.nlm.nih.gov/pubmed/22611377.

Sharma, A., R. C. Larue, et al. (2013). "BET proteins promote efficient murine leukemia virus integration at transcription start sites." Proc Natl Acad Sci U S A 110(29): 12036-12041. http://www.ncbi.nlm.nih.gov/pubmed/23818621.

Sharma, A., T. K. Wolfgruber, et al. (2013). "Tandem repeats derived from centromeric retrotransposons." BMC Genomics 14(1): 142. http://www.ncbi.nlm.nih.gov/pubmed/23452340.

Tsukahara, S., A. Kawabe, et al. (2012). "Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata." Genes Dev 26(7): 705-713. http://www.ncbi.nlm.nih.gov/pubmed/22431508.

Vanegas, M., M. Llano, et al. (2005). "Identification of the LEDGF/p75 HIV-1 integrase-interaction domain and NLS reveals NLS-independent chromatin tethering." J Cell Sci 118(Pt 8): 1733-1743. http://www.ncbi.nlm.nih.gov/pubmed/15797927.

Wang, G. P., A. Ciuffi, et al. (2007). "HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications." Genome Res 17(8): 1186-1194. http://www.ncbi.nlm.nih.gov/pubmed/17545577.

Weber, B., T. Heitkam, et al. (2013). "Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration." Mob DNA 4(1): 8. http://www.ncbi.nlm.nih.gov/pubmed/23448600.

Wolfgruber, T. K., A. Sharma, et al. (2009). "Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic Loci shaped primarily by retrotransposons." PLoS Genet 5(11): e1000743. http://www.ncbi.nlm.nih.gov/pubmed/19956743.

Xie, W., X. Gai, et al. (2001). "Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p." Mol Cell Biol 21(19): 6606-6614. http://www.ncbi.nlm.nih.gov/pubmed/11533248.

Yap, K. L. and M. M. Zhou (2011). "Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription." Biochemistry 50(12): 1966-1980. http://www.ncbi.nlm.nih.gov/pubmed/21288002.

Zhang, Y. and D. L. Mager (2012). "Gene properties and chromatin state influence the accumulation of transposable elements in genes." PLoS One 7(1): e30158. http://www.ncbi.nlm.nih.gov/pubmed/22272293.

Zheng, Y., Z. Ao, et al. (2010). "Characterization of the HIV-1 integrase chromatin- and LEDGF/p75-binding abilities by mutagenic analysis within the catalytic core domain of integrase." Virol J 7: 68. http://www.ncbi.nlm.nih.gov/pubmed/20331877.