Table II.11. Examples of targeted natural genetic engineering.

Example

Observed specificity (mechanism)

References

DNA import and export

Special DNA uptake signals; oriT sites for initiating conjugal transfer replication

DNA uptake signals in bacterial transformation (Smith, Gwinn et al. 1999; Wang, Goodman et al. 2002; Findlay and Redfield 2009; Maughan, Wilson et al. 2010), oriT signals in conjugative plasmids and elements (Adams, Lyras et al. 2002; Grohmann, Muth et al. 2003; Parker, Becker et al. 2005; Garcillan-Barcia, Francia et al. 2009)

Homologous recombination

Special sequences stimulating DS breaks and other biochemical events in homologous exchange

(Cromie, Hyppa et al. 2007; Bagshaw, Pitt et al. 2008; Pryce and McFarlane 2009; Steiner, Steiner et al. 2009)Chi-like sequences (Smith 1994; Sourice, Biaudet et al. 1998; El Karoui, Biaudet et al. 1999; El Karoui, Schaeffer et al. 2000; Halpern, Chiapello et al. 2007; Dillingham and Kowalczykowski 2008); Spo11 targets and hotspots in S. cerevisiae (Fukuda, Kugou et al. 2008; Nicolas 2009; Tsai, Burt et al. 2010); M26 and other recombination hotspots in S. pombe (Smith 1994; Cromie, Hyppa et al. 2007; Pryce and McFarlane 2009; Steiner, Steiner et al. 2009); repeats in plant and animal genomes (Mezard 2006; Buard and de Massy 2007; Coop and Myers 2007; McVean 2010)

Transposon insertions at special DNA structures

Insertion at REP palindromes (transposase specificity), DNA replication forks (interaction with processivity factor)

 (Tobes and Pareja 2006);  (Jomantiene, Zhao et al. 2007);(Wolkow, DeBoy et al. 1996; Nunvar, Huckova et al.) (Peters and Craig 2000; Peters and Craig 2001) (Parks, Li et al. 2009)

IS200/IS605 family target site selection

DNA sequence homology

 (Barabas, Ronning et al. 2008; Guynet, Achard et al. 2009)

IS911 target site selection

InsAB transposase binding to specific DNA sequences; regulated by synthesis of InsA transposase without specificity

 (Rousseau, Loot et al. 2007)

Cassette replacement/conversion in antigenic variation

DNA sequence homology at cassette boundaries

(Barbour and Restrepo 2000; Brayton, Palmer et al. 2002; Palmer, Futse et al. 2006; Palmer and Brayton 2007; Palmer, Bankhead et al. 2009)

Site-specific recombination (phase variation, antigenic variation, insertions and excisions)

Protein recognition of DNA sequence; protein-protein interaction

 (Nash 1981), (Silverman, Zieg et al. 1979; Komano, Kim et al. 1994; Komano 1999)

 Diversity-generating retroelements

Localized mutagenesis at duplicated segment of coding region; reverse transcription, RNA-DNA sequence homology

(Medhekar and Miller 2007; Guo, Tse et al. 2008)

Mating type cassette switching (S. cerevisiae, S. pombe, Kluyveromyces lactis)

Protein recognition of DNA sequence (endonuclease or transposase cleavage at unique site), DNA sequence homology at cassette boundaries

(Haber 1998; Klar, Ivanova et al. 1998; Dalgaard and Klar 1999; Haber 2006; Klar 2007; Barsoum, Martinez et al. 2010); (Rusche and Rine 2010)

 

Hermes transposon in S. cerevisiae

Preferential insertion in nucleosome-free regions

(Gangadharan, Mularoni et al. 2010)

Immune system V(D)J joining

Cleavage at specific recombination signal sequences (recognition of RSSs by RAG1+2 transposase); flexible joining by non-homologous end joining (NHEJ) functions

 (Bassing, Swat et al. 2002; Gellert 2002)

Immune system somatic hypermutation

5’ exons of immunoglobulin sequences (transcriptional specificity determinants), DIVAC element to suppress repair

 (Kinoshita and Honjo 2001; Inlay, Gao et al. 2006; Yang, Fugmann et al. 2006; Xiang and Garrard 2008; Blagodatski, Batrak et al. 2009)

Immune system class switching

Lymphokine-controlled choice of switch region transcription (promoter activation)

 (Kinoshita and Honjo 2001; Honjo, Kinoshita et al. 2002)

Budding yeast (S. cerevisaea) retroviral-like elements Ty1-Ty4

Strong preference for insertion upstream of RNA polymerase III initiation sites (protein-protein interaction of integrase with RNA polymerase III factors TFIIIB and TFIIIC).

 (Kirchner, Connolly et al. 1995; Kim, Vanguri et al. 1998; Bushman 2003; Bachman, Gelbart et al. 2005; Mou, Kenny et al. 2006)

Budding yeast retroviral-like element Ty1

Preference for insertion upstream of RNA polymerase II initiation sites rather than exons.

 (Eibel and Philippsen 1984)

Budding yeast retroviral-like element Ty5

Strong preference for insertion in transcriptionally silenced regions of the yeast genome (protein-protein interaction of integrase targeting domain (TD) with Sir4 silencing protein). Regulated in response to stress by modulation of integrase TD protein phosphorylation.

 (Zou, Ke et al. 1996; Gai and Voytas 1998; Zhu, Zou et al. 1998; Xie, Gai et al. 2001; Bushman 2003; Zhu, Dai et al. 2003; Brady, Schmidt et al. 2008); (Dai, Xie et al. 2007)

Fission yeast (S. pombe) retroviral-like elements Tf1 & Tf2

Insertion almost exclusively in intergenic regions (>98% for Tf1); biased towards PolII promoter-proximal sites, 100 – 400 bp upstream of the translation start by protein-protein interaction with transcription activators; prefers chromosome 3.

(Behrens, Hayles et al. 2000; Singleton and Levin 2002; Bowen, Jordan et al. 2003); (Bushman 2003; Kordis 2005; Leem, Ripmaster et al. 2008); (Chatterjee, Leem et al. 2009) (Novikova 2009) (Guo and Levin 2010)

MAGGY (fungal Ty3/gypsy family) retrotransposon

Targeting to heterochromatin by chromodomain in integrase protein

 (Gao, Hou et al. 2008)

Dictyostelium discoideum non-LTR retrotransposon TRE5-A

Insertion upstream of tRNA sequences by protein-protein interactions with RNA Pol III transcription factors

 (Siol, Boutliliss et al. 2006; Chung, Siol et al. 2007)

Rapidly expanding mPing transposons in rice

Insertion upstream of coding sequences

 (Naito, Zhang et al. 2009)

Drosophila ZAM LTR retrotransposons

Site-specific insertions by protein-DNA recognition

 (Faye, Arnaud et al. 2008)

Murine Leukemia Virus (MLV)

Preference for insertion upstream of transcription start sites in human genome; role for IN (integrase) and GAG proteins

 (Bushman 2003; Wu, Li et al. 2003; Mitchell, Beitzel et al. 2004); (Dunbar 2005; Lewinski, Yamashita et al. 2006)

HIV, SIV

Preference for insertion into actively transcribed regions of human genome; role for IN (integrase) and GAG proteins; HIV integrase interaction with LEDGF/p75 transcription factor

 (Mitchell, Beitzel et al. 2004; Ciuffi, Llano et al. 2005; Dunbar 2005; Ciuffi and Bushman 2006; Ciuffi, Diamond et al. 2006; Lewinski, Yamashita et al. 2006; Llano, Saenz et al. 2006; Botbol, Raghavendra et al. 2008; Ciuffi 2008); (Engelman and Cherepanov 2008; Desfarges and Ciuffi 2010; Levin, Rosenbluh et al. 2010)

Gammaretroviral (but not lentiviral) vectors

Insertion at transcription factor binding sites; 21% recurrence rate at hotspots

 (Cattoglio, Facchini et al. 2007; Deichmann, Hacein-Bey-Abina et al. 2007; Felice, Cattoglio et al. 2009)

Drosophila gypsy retrovirus

Site-specific insertion into Ovo locus regulatory region guided by Ovo protein binding sites

 (Labrador and Corces 2001; Labrador, Sha et al. 2008)

Drosophila P-factors

Preference for insertion into the 5’ end of transcripts

 (Spradling, Stern et al. 1995)

Drosophila P-factors

Targeting (“homing”) to regions of transcription factor function by incorporation of cognate binding site; region-specific

 (Kassis, Noll et al. 1992; Taillebourg and Dura 1999; Bender and Hudson 2000) (Fauvarque and Dura 1983; Hama, Ali et al. 1990; Kassis 2002)

HeT-A and TART retrotransposons

Insertion at Drosophila telomeres

 (Casacuberta and Pardue 2002; Casacuberta and Pardue 2003; Casacuberta and Pardue 2003; Pardue and DeBaryshe 2003)

R1 and R2 LINE element retrotransposons

Insertion in arthropod ribosomal 28S coding sequences (sequence-specific homing endonuclease)

 (Xiong, Burke et al. 1988; Xiong and Eickbush 1988; Xiong and Eickbush 1988; Burke, Malik et al. 1989)

Group I homing introns (DNA based)

Site-specific insertion into coding sequences in bacteria and eukaryotes (sequence-specific endonuclease)

 (Belfort and Perlman 1995)

Group II homing introns (RNA based)

Site-specific insertion into coding sequences in bacteria and eukaryotes (RNA recognition of DNA sequence motifs, reverse transcription)

 (Mohr, Smith et al. 2000; Karberg, Guo et al. 2001)

Group II intron retroelements

Insertion after intrinsic transcriptional terminators.

 (Robart, Seo et al. 2007)


REFERENCES

 

Adams, V., D. Lyras, et al. (2002). "The clostridial mobilisable transposons." Cell Mol Life Sci 59(12): 2033-2043. http://www.ncbi.nlm.nih.gov/pubmed/12568329.

Bachman, N., M. E. Gelbart, et al. (2005). "TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs." Genes Dev 19(8): 955-964. http://www.ncbi.nlm.nih.gov/pubmed/15833918.

Bagshaw, A. T., J. P. Pitt, et al. (2008). "High frequency of microsatellites in S. cerevisiae meiotic recombination hotspots." BMC Genomics 9: 49. http://www.ncbi.nlm.nih.gov/pubmed/18226240.

Barabas, O., D. R. Ronning, et al. (2008). "Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection." Cell 132(2): 208-220. http://www.ncbi.nlm.nih.gov/pubmed/18243097.

Barbour, A. G. and B. I. Restrepo (2000). "Antigenic variation in vector-borne pathogens." Emerg Infect Dis 6(5): 449-457. http://www.ncbi.nlm.nih.gov/pubmed/10998374.

Barsoum, E., P. Martinez, et al. (2010). "α3, a transposable element that promotes host sexual reproduction." Genes Dev 24: 33-44. .

Bassing, C. H., W. Swat, et al. (2002). "The mechanism and regulation of chromosomal V(D)J recombination." Cell 109: S45-55. .

Behrens, R., J. Hayles, et al. (2000). "Fission yeast retrotransposon Tf1 integration is targeted to 5' ends of open reading frames." Nucleic Acids Res 28(23): 4709-4716. http://www.ncbi.nlm.nih.gov/pubmed/11095681.

Belfort, M. and P. S. Perlman (1995). "Mechanisms of intron mobility." J Biol Chem 270(51): 30237-30240. http://www.ncbi.nlm.nih.gov/pubmed/8530436.

Bender, W. and A. Hudson (2000). "P element homing to the Drosophila bithorax complex." Development 127(18): 3981-3992. http://www.ncbi.nlm.nih.gov/pubmed/10952896.

Blagodatski, A., V. Batrak, et al. (2009). "A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation." PLoS Genet 5(1): e1000332. http://www.ncbi.nlm.nih.gov/pubmed/19132090.

Botbol, Y., N. K. Raghavendra, et al. (2008). "Chromatinized templates reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro." Nucleic Acids Res 36(4): 1237-1246. http://www.ncbi.nlm.nih.gov/pubmed/18174227.

Bowen, N. J., I. K. Jordan, et al. (2003). "Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe." Genome Res 13(9): 1984-1997. http://www.ncbi.nlm.nih.gov/pubmed/12952871.

Brady, T. L., C. L. Schmidt, et al. (2008). "Targeting integration of the Saccharomyces Ty5 retrotransposon." Methods Mol Biol 435: 153-163. http://www.ncbi.nlm.nih.gov/pubmed/18370074.

Brayton, K. A., G. H. Palmer, et al. (2002). "Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion." Mol Microbiol 43(5): 1151-1159. http://www.ncbi.nlm.nih.gov/pubmed/11918803.

Buard, J. and B. de Massy (2007). "Playing hide and seek with mammalian meiotic crossover hotspots." Trends Genet 23(6): 301-309. http://www.ncbi.nlm.nih.gov/pubmed/17434233.

Burke, W. D., H. S. Malik, et al. (1989). "The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods." Mol Biol Evol 16(4): 502-511. http://www.ncbi.nlm.nih.gov/pubmed/10331276.

Bushman, F. D. (2003). "Targeting survival: integration site selection by retroviruses and LTR-retrotransposons." Cell 115(2): 135-138. http://www.ncbi.nlm.nih.gov/pubmed/14567911.

Casacuberta, E. and M. L. Pardue (2002). "Coevolution of the telomeric retrotransposons across Drosophila species." Genetics 161(3): 1113-1124. http://www.ncbi.nlm.nih.gov/pubmed/12136015.

Casacuberta, E. and M. L. Pardue (2003). "HeT-A elements in Drosophila virilis: retrotransposon telomeres are conserved across the Drosophila genus." Proc Natl Acad Sci U S A 100(24): 14091-14096. http://www.ncbi.nlm.nih.gov/pubmed/14614149.

Casacuberta, E. and M. L. Pardue (2003). "Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group." Proc Natl Acad Sci U S A 100(6): 3363-3368. http://www.ncbi.nlm.nih.gov/pubmed/12626755\.

Cattoglio, C., G. Facchini, et al. (2007). "Hot spots of retroviral integration in human CD34+ hematopoietic cells." Blood 110(6): 1770-1778. http://www.ncbi.nlm.nih.gov/pubmed/17507662.

Chatterjee, A. G., Y. E. Leem, et al. (2009). "The chromodomain of Tf1 integrase promotes binding to cDNA and mediates target site selection." J Virol 83(6): 2675-2685. http://www.ncbi.nlm.nih.gov/pubmed/19109383.

Chung, T., O. Siol, et al. (2007). "Protein interactions involved in tRNA gene-specific integration of Dictyostelium discoideum non-long terminal repeat retrotransposon TRE5-A." Mol Cell Biol 27(24): 8492-8501. http://www.ncbi.nlm.nih.gov/pubmed/17923679.

Ciuffi, A. (2008). "Mechanisms governing lentivirus integration site selection." Curr Gene Ther\ 8(6): 419-429. http://www.ncbi.nlm.nih.gov/pubmed/19075625.

Ciuffi, A. and F. D. Bushman (2006). "Retroviral DNA integration: HIV and the role of LEDGF/p75." Trends Genet 22(7): 388-395. http://www.ncbi.nlm.nih.gov/pubmed/16730094.

Ciuffi, A., T. L. Diamond, et al. (2006). "Modulating target site selection during human immunodeficiency virus DNA integration in vitro with an engineered tethering factor." Hum Gene Ther 17(9): 960-967. http://www.ncbi.nlm.nih.gov/pubmed/16972764.

Ciuffi, A., M. Llano, et al. (2005). "A role for LEDGF/p75 in targeting HIV DNA integration." Nat Med\ 11(12): 1287-1289. http://www.ncbi.nlm.nih.gov/pubmed/16311605.

Coop, G. and S. R. Myers (2007). "Live hot, die young: transmission distortion in recombination hotspots." PLoS Genet 3(3): e35. http://www.ncbi.nlm.nih.gov/pubmed/17352536.

Cromie, G. A., R. W. Hyppa, et al. (2007). "A discrete class of intergenic DNA dictates meiotic DNA break hotspots in fission yeast." PLoS Genet 3(8): e141. http://www.ncbi.nlm.nih.gov/pubmed/17722984.

Dai, J., W. Xie, et al. (2007). "Phosphorylation regulates integration of the yeast Ty5 retrotransposon into heterochromatin." Mol Cell 27(2): 289-299. http://www.ncbi.nlm.nih.gov/pubmed/17643377.

Dalgaard, J. Z. and A. J. Klar (1999). "Orientation of DNA replication establishes mating-type switching pattern in S. pombe." Nature 400(6740): 181-184. http://www.ncbi.nlm.nih.gov/pubmed/10408447.

Deichmann, A., S. Hacein-Bey-Abina, et al. (2007). "Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy." J Clin Invest\ 117(8): 2225-2232. http://www.ncbi.nlm.nih.gov/pubmed/17671652.

Desfarges, S. and A. Ciuffi (2010). "Retroviral Integration Site Selection." Viruses 2: 111-130. .

Dillingham, M. S. and S. C. Kowalczykowski (2008). "RecBCD enzyme and the repair of double-stranded DNA breaks." Microbiol Mol Biol Rev 72(4): 642-671. http://www.ncbi.nlm.nih.gov/pubmed/19052323.

Dunbar, C. E. (2005). "Stem cell gene transfer: insights into integration and hematopoiesis from primate genetic marking studies." Ann N Y Acad Sci 1044: 178-182\. http://www.ncbi.nlm.nih.gov/pubmed/15958711.

Eibel, H. and P. Philippsen (1984). "Preferential integration of yeast transposable element Ty into a promoter region." Nature 307(5949): 386-388. http://www.ncbi.nlm.nih.gov/pubmed/6320003.

El Karoui, M., V. Biaudet, et al. (1999). "Characteristics of Chi distribution on different bacterial genomes." Res Microbiol 150(9-10): 579-587. http://www.ncbi.nlm.nih.gov/pubmed/10672998.

El Karoui, M., M. Schaeffer, et al. (2000). "Orientation specificity of the Lactococcus lactis Chi site." Genes Cells 5(6): 453-461. http://www.ncbi.nlm.nih.gov/pubmed/10886371.

Engelman, A. and P. Cherepanov (2008). "The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication." PLoS Pathog 4(3): e1000046. http://www.ncbi.nlm.nih.gov/pubmed/18369482.

Fauvarque, M. O. and J. M. Dura (1983). "polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila." Genes Dev 7(8): 1508-1520. http://www.ncbi.nlm.nih.gov/pubmed/8101825.

Faye, B., F. Arnaud, et al. (2008). "Functional characteristics of a highly specific integrase encoded by an LTR-retrotransposon." PLoS One 3(9): e3185. http://www.ncbi.nlm.nih.gov/pubmed/18784842.

Felice, B., C. Cattoglio, et al. (2009). "Transcription factor binding sites are genetic determinants of retroviral integration in the human genome." PLoS One 4(2): e4571. http://www.ncbi.nlm.nih.gov/pubmed/19238208.

Findlay, W. A. and R. J. Redfield (2009). "Coevolution of DNA uptake sequences and bacterial proteomes." Genome Biol Evol 1: 45-55. http://www.ncbi.nlm.nih.gov/pubmed/20333176\.

Fukuda, T., K. Kugou, et al. (2008). "Targeted induction of meiotic double-strand breaks reveals chromosomal domain-dependent regulation of Spo11 and interactions among potential sites of meiotic recombination." Nucleic Acids Res 36(3): 984-997. http://www.ncbi.nlm.nih.gov/pubmed/18096626\.

Gai, X. and D. F. Voytas (1998). "A single amino acid change in the yeast retrotransposon Ty5 abolishes targeting to silent chromatin." Mol Cell 1(7): 1051-1055. http://www.ncbi.nlm.nih.gov/pubmed/9651588.

Gangadharan, S., L. Mularoni, et al. (2010). "DNA transposon Hermes inserts into DNA in nucleosome-free regions in vivo." Proc Natl Acad Sci U S A 107(51): 21966-21972. http://www.ncbi.nlm.nih.gov/pubmed/21131571.

Gao, X., Y. Hou, et al. (2008). "Chromodomains direct integration of retrotransposons to heterochromatin." Genome Res 18(3): 359-369. http://www.ncbi.nlm.nih.gov/pubmed/18256242.

Garcillan-Barcia, M. P., M. V. Francia, et al. (2009). "The diversity of conjugative relaxases and its application in plasmid classification." FEMS Microbiol Rev 33(3): 657-687. http://www.ncbi.nlm.nih.gov/pubmed/19396961.

Gellert, M. (2002). "V(D)J recombination: RAG proteins, repair factors, and regulation." Ann Rev Biochem 71: 101-132. .

Grohmann, E., G. Muth, et al. (2003). "Conjugative plasmid transfer in gram-positive bacteria." Microbiol Mol Biol Rev 67(2): 277-301. http://www.ncbi.nlm.nih.gov/pubmed/12794193.

Guo, H., L. V. Tse, et al. (2008). "Diversity-generating retroelement homing regenerates target sequences for repeated rounds of codon rewriting and protein diversification." Mol Cell 31(6): 813-823. http://www.ncbi.nlm.nih.gov/pubmed/18922465.

Guo, Y. and H. L. Levin (2010). "High-throughput sequencing of retrotransposon integration provides a saturated profile of target activity in Schizosaccharomyces pombe." Genome Res 20(2): 239-248. http://www.ncbi.nlm.nih.gov/pubmed/20040583.

Guynet, C., A. Achard, et al. (2009). "Resetting the site: redirecting integration of an insertion sequence in a predictable way." Mol Cell 34(5): 612-619. http://www.ncbi.nlm.nih.gov/pubmed/19524540.

Haber, J. E. (1998). "Mating-type gene switching in Saccharomyces cerevisiae." Annu Rev Genet 32: 561-599. http://www.ncbi.nlm.nih.gov/pubmed/9928492.

Haber, J. E. (2006). "Transpositions and translocations induced by site-specific double-strand breaks in budding yeast." DNA Repair (Amst) 5(9-10): 998-1009. http://www.ncbi.nlm.nih.gov/pubmed/16807137.

Halpern, D., H. Chiapello, et al. (2007). "Identification of DNA motifs implicated in maintenance of bacterial core genomes by predictive modeling." PLoS Genet 3(9): 1614-1621. http://www.ncbi.nlm.nih.gov/pubmed/17941709.

Hama, C., Z. Ali, et al. (1990). "Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter." Genes Dev 4(7): 1079-1093. http://www.ncbi.nlm.nih.gov/pubmed/1976568.

Honjo, T., K. Kinoshita, et al. (2002). "Molecular mechanism of class switch recombination: linkage with somatic hypermutation." Annu Rev Immunol 20: 165-196. http://www.ncbi.nlm.nih.gov/pubmed/11861601.

Inlay, M. A., H. H. Gao, et al. (2006). "Roles of the Ig kappa light chain intronic and 3' enhancers in Igk somatic hypermutation." J Immunol 177(2): 1146-1151. http://www.ncbi.nlm.nih.gov/pubmed/16818772.

Jomantiene, R., Y. Zhao, et al. (2007). "Sequence-variable mosaics: composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas." DNA Cell Biol 26(8): 557-564. http://www.ncbi.nlm.nih.gov/pubmed/17688407.

Karberg, M., H. Guo, et al. (2001). "Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria." Nat Biotechnol 19(12): 1162-1167. http://www.ncbi.nlm.nih.gov/pubmed/11731786.

Kassis, J. A. (2002). "Pairing-sensitive silencing, polycomb group response elements, and transposon homing in Drosophila." Adv Genet 46: 421-438. .

Kassis, J. A., E. Noll, et al. (1992). "Altering the insertional specificity of a Drosophila transposable element." Proc Natl Acad Sci U S A 89(5): 1919-1923. http://www.ncbi.nlm.nih.gov/pubmed/1311855.

Kim, J. M., S. Vanguri, et al. (1998). "Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence." Genome Res 8(5): 464-478. http://www.ncbi.nlm.nih.gov/pubmed/9582191.

Kinoshita, K. and T. Honjo (2001). "Linking class-switch recombination with somatic hypermutation." Nat Rev Mol Cell Biol 2(7): 493-503. http://www.ncbi.nlm.nih.gov/pubmed/11433363.

Kirchner, J., C. M. Connolly, et al. (1995). "Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element." Science 267(5203): 1488-1491. http://www.ncbi.nlm.nih.gov/pubmed/7878467.

Klar, A. J. (2007). "Lessons learned from studies of fission yeast mating-type switching and silencing." Annu Rev Genet 41: 213-236. http://www.ncbi.nlm.nih.gov/pubmed/17614787.

Klar, A. J., A. V. Ivanova, et al. (1998). "Multiple epigenetic events regulate mating-type switching of fission yeast." Novartis Found Symp 214: 87-99; discussion 99-103. http://www.ncbi.nlm.nih.gov/pubmed/9601013.

Komano, T. (1999). "Shufflons: multiple inversion systems and integrons." Annu Rev Genet 33: 171-191. http://www.ncbi.nlm.nih.gov/pubmed/10690407.

Komano, T., S. R. Kim, et al. (1994). "DNA rearrangement of the shufflon determines recipient specificity in liquid mating of IncI1 plasmid R64." J Mol Biol 243(1): 6-9. http://www.ncbi.nlm.nih.gov/pubmed/7932741.

Kordis, D. (2005). "A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses." Gene 347(2): 161-173. http://www.ncbi.nlm.nih.gov/pubmed/15777633.

Labrador, M. and V. G. Corces (2001). "Protein determinants of insertional specificity for the Drosophila gypsy retrovirus." Genetics 158(3): 1101-1110. http://www.ncbi.nlm.nih.gov/pubmed/11454759.

Labrador, M., K. Sha, et al. (2008). "Insulator and Ovo proteins determine the frequency and specificity of insertion of the gypsy retrotransposon in Drosophila melanogaster." Genetics 180(3): 1367-1378. http://www.ncbi.nlm.nih.gov/pubmed/18791225.

Leem, Y. E., T. L. Ripmaster, et al. (2008). "Retrotransposon Tf1 is targeted to Pol II promoters by transcription activators." Mol Cell 30(1): 98-107. http://www.ncbi.nlm.nih.gov/pubmed/18406330.

Levin, A., J. Rosenbluh, et al. (2010). "Integration of HIV-1 DNA is regulated by interplay between viral rev and cellular LEDGF/p75 proteins." Mol Med 16(1-2): 34-44. http://www.ncbi.nlm.nih.gov/pubmed/19855849.

Lewinski, M. K., M. Yamashita, et al. (2006). "Retroviral DNA integration: viral and cellular determinants of target-site selection." PLoS Pathog 2(6): e60. http://www.ncbi.nlm.nih.gov/pubmed/16789841.

Llano, M., D. T. Saenz, et al. (2006). "An essential role for LEDGF/p75 in HIV integration." Science 314(5798): 461-464. http://www.ncbi.nlm.nih.gov/pubmed/16959972.

Maughan, H., L. A. Wilson, et al. (2010). "Bacterial DNA Uptake Sequences Can Accumulate by Molecular Drive Alone." Genetics 186(2): 613-627. http://www.ncbi.nlm.nih.gov/pubmed/20628039\.

McVean, G. (2010). "What drives recombination hotspots to repeat DNA in humans?" Philos Trans R Soc Lond B Biol Sci 365(1544): 1213-1218. http://www.ncbi.nlm.nih.gov/pubmed/20308096.

Medhekar, B. and J. F. Miller (2007). "Diversity-generating retroelements." Curr Opin Microbiol 10(4): 388-395. http://www.ncbi.nlm.nih.gov/pubmed/17703991.

Mezard, C. (2006). "Meiotic recombination hotspots in plants." Biochem Soc Trans 34(Pt 4): 531-534. http://www.ncbi.nlm.nih.gov/pubmed/16856852.

Mitchell, R. S., B. F. Beitzel, et al. (2004). "Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences." PLoS Biol 2(8): E234. http://www.ncbi.nlm.nih.gov/pubmed/15314653.

Mohr, G., D. Smith, et al. (2000). "Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences." Genes Dev 14(5): 559-573. http://www.ncbi.nlm.nih.gov/pubmed/10716944.

Mou, Z., A. E. Kenny, et al. (2006). "Hos2 and Set3 promote integration of Ty1 retrotransposons at tRNA genes in Saccharomyces cerevisiae." Genetics 172(4): 2157-2167. http://www.ncbi.nlm.nih.gov/pubmed/16415356.

Naito, K., F. Zhang, et al. (2009). "Unexpected consequences of a sudden and massive transposon amplification on rice gene expression." Nature 461(7267): 1130-1134. http://www.ncbi.nlm.nih.gov/pubmed/19847266.

Nash, H. A. (1981). "Integration and excision of bacteriophage lambda: the mechanism of conservation site specific recombination." Annu Rev Genet 15: 143-167. http://www.ncbi.nlm.nih.gov/pubmed/6461289.

Nicolas, A. (2009). "Modulating and targeting meiotic double-strand breaks in Saccharomyces cerevisiae." Methods Mol Biol 557: 27-33. http://www.ncbi.nlm.nih.gov/pubmed/19799174.

Novikova, O. (2009). "Chromodomains and LTR retrotransposons in plants." Commun Integr Biol 2(2): 158-162. http://www.ncbi.nlm.nih.gov/pubmed/19513271.

Nunvar, J., T. Huckova, et al. (2010). "Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes." BMC Genomics 11(1): 44. http://www.ncbi.nlm.nih.gov/pubmed/20085626.

Palmer, G. H., T. Bankhead, et al. (2009). "'Nothing is permanent but change'- antigenic variation in persistent bacterial pathogens." Cell Microbiol 11(12): 1697-1705. http://www.ncbi.nlm.nih.gov/pubmed/19709057.

Palmer, G. H. and K. A. Brayton (2007). "Gene conversion is a convergent strategy for pathogen antigenic variation." Trends Parasitol 23(9): 408-413. http://www.ncbi.nlm.nih.gov/pubmed/17662656.

Palmer, G. H., J. E. Futse, et al. (2006). "Insights into mechanisms of bacterial antigenic variation derived from the complete genome sequence of Anaplasma marginale." Ann N Y Acad Sci 1078: 15-25. http://www.ncbi.nlm.nih.gov/pubmed/17114676.

Pardue, M. L. and P. G. DeBaryshe (2003). "Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres." Annu Rev Genet 37: 485-511. http://www.ncbi.nlm.nih.gov/pubmed/14616071.

Parker, C., E. Becker, et al. (2005). "Elements in the co-evolution of relaxases and their origins of transfer." Plasmid 53(2): 113-118. http://www.ncbi.nlm.nih.gov/pubmed/15737398.

Parks, A. R., Z. Li, et al. (2009). "Transposition into replicating DNA occurs through interaction with the processivity factor." Cell 138(4): 685-695. http://www.ncbi.nlm.nih.gov/pubmed/19703395.

Peters, J. E. and N. L. Craig (2000). "Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates." Mol Cell 6(3): 573-582. http://www.ncbi.nlm.nih.gov/pubmed/11030337.

Peters, J. E. and N. L. Craig (2001). "Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE." Genes Dev 15(6): 737-747. http://www.ncbi.nlm.nih.gov/pubmed/11274058.

Pryce, D. W. and R. J. McFarlane (2009). "The meiotic recombination hotspots of Schizosaccharomyces pombe." Genome Dyn 5: 1-13. http://www.ncbi.nlm.nih.gov/pubmed/18948703.

Robart, A. R., W. Seo, et al. (2007). "Insertion of group II intron retroelements after intrinsic transcriptional terminators." Proc Natl Acad Sci U S A 104(16): 6620-6625. http://www.ncbi.nlm.nih.gov/pubmed/17420455.

Rousseau, P., C. Loot, et al. (2007). "Control of IS911 target selection: how OrfA may ensure IS dispersion." Mol Microbiol 63(6): 1701-1709. http://www.ncbi.nlm.nih.gov/pubmed/17367389.

Rusche, L. N. and J. Rine (2010). "Switching the mechanism of mating type switching: a domesticated transposase supplants a domesticated homing endonuclease." Genes Dev 24(1): 10-14. http://www.ncbi.nlm.nih.gov/pubmed/20047997.

Silverman, M., J. Zieg, et al. (1979). "Phase variation in Salmonella: genetic analysis of a recombinational switch." Proc Natl Acad Sci U S A 76(1): 391-395. http://www.ncbi.nlm.nih.gov/pubmed/370828.

Singleton, T. L. and H. L. Levin (2002). "A long terminal repeat retrotransposon of fission yeast has strong preferences for specific sites of insertion." Eukaryot Cell 1(1): 44-55. http://www.ncbi.nlm.nih.gov/pubmed/12455970.

Siol, O., M. Boutliliss, et al. (2006). "Role of RNA polymerase III transcription factors in the selection of integration sites by the dictyostelium non-long terminal repeat retrotransposon TRE5-A." Mol Cell Biol 26(22): 8242-8251. http://www.ncbi.nlm.nih.gov/pubmed/16982688.

Smith, G. R. (1994). "Hotspots of homologous recombination." Experientia 50(3): 234-241. http://www.ncbi.nlm.nih.gov/pubmed/8143797.

Smith, H. O., M. L. Gwinn, et al. (1999). "DNA uptake signal sequences in naturally transformable bacteria." Res Microbiol 150(9-10): 603-616. http://www.ncbi.nlm.nih.gov/pubmed/10673000.

Sourice, S., V. Biaudet, et al. (1998). "Identification of the Chi site of Haemophilus influenzae as several sequences related to the Escherichia coli Chi site." Mol Microbiol 27(5): 1021-1029. http://www.ncbi.nlm.nih.gov/pubmed/9535091.

Spradling, A. C., D. M. Stern, et al. (1995). "Gene disruptions using P transposable elements: an integral component of the Drosophila genome project." Proc Natl Acad Sci U S A 92(24): 10824-10830. http://www.ncbi.nlm.nih.gov/pubmed/7479892.

Steiner, W. W., E. M. Steiner, et al. (2009). "Novel nucleotide sequence motifs that produce hotspots of meiotic recombination in Schizosaccharomyces pombe." Genetics 182(2): 459-469. http://www.ncbi.nlm.nih.gov/pubmed/19363124.

Taillebourg, E. and J. M. Dura (1999). "A novel mechanism for P element homing in Drosophila." Proc Natl Acad Sci U S A 96(12): 6856-6861. http://www.ncbi.nlm.nih.gov/pubmed/10359803.

Tobes, R. and E. Pareja (2006). "Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements." BMC Genomics 7: 62. http://www.ncbi.nlm.nih.gov/pubmed/16563168.

Tsai, I. J., A. Burt, et al. (2010). "Conservation of recombination hotspots in yeast." Proc Natl Acad Sci U S A 107(17): 7847-7852. http://www.ncbi.nlm.nih.gov/pubmed/20385822.

Wang, Y., S. D. Goodman, et al. (2002). "Natural transformation and DNA uptake signal sequences in Actinobacillus actinomycetemcomitans." J Bacteriol 184(13): 3442-3449. http://www.ncbi.nlm.nih.gov/pubmed/12057937.

Wolkow, C. A., R. T. DeBoy, et al. (1996). "Conjugating plasmids are preferred targets for Tn7." Genes Dev 10(17): 2145-2157. http://www.ncbi.nlm.nih.gov/pubmed/8804309.

Wu, X., Y. Li, et al. (2003). "Transcription start regions in the human genome are favored targets for MLV integration." Science 300(5626): 1749-1751. http://www.ncbi.nlm.nih.gov/pubmed/12805549.

Xiang, Y. and W. T. Garrard (2008). "The Downstream Transcriptional Enhancer, Ed, positively regulates mouse Ig kappa gene expression and somatic hypermutation." J Immunol 180(10): 6725-6732. http://www.ncbi.nlm.nih.gov/pubmed/18453592.

Xie, W., X. Gai, et al. (2001). "Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p." Mol Cell Biol 21(19): 6606-6614. http://www.ncbi.nlm.nih.gov/pubmed/11533248.

Xiong, Y., W. D. Burke, et al. (1988). "Ribosomal DNA insertion elements R1Bm and R2Bm can transpose in a sequence specific manner to locations outside the 28S genes." Nucleic Acids Res 16(22): 10561-10573. http://www.ncbi.nlm.nih.gov/pubmed/2849750.

Xiong, Y. and T. H. Eickbush (1988). "The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons." Mol Cell Biol 8(1): 114-123. http://www.ncbi.nlm.nih.gov/pubmed/2447482.

Xiong, Y. E. and T. H. Eickbush (1988). "Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm." Cell 55(2): 235-246. http://www.ncbi.nlm.nih.gov/pubmed/2844414.

Yang, S. Y., S. D. Fugmann, et al. (2006). "Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences." J Exp Med 203(13): 2919-2928. http://www.ncbi.nlm.nih.gov/pubmed/17178919.

Zhu, Y., J. Dai, et al. (2003). "Controlling integration specificity of a yeast retrotransposon." Proc Natl Acad Sci U S A 100(10): 5891-5895. http://www.ncbi.nlm.nih.gov/pubmed/12730380.

Zhu, Y., S. Zou, et al. (1998). "Tagging chromatin with retrotransposons: target specificity of the Saccharomyces Ty5 retrotransposon changes with the chromosomal localization of Sir3p and Sir4p." Genes Dev 13(20): 2738-2749. http://www.ncbi.nlm.nih.gov/pubmed/10541559.

Zou, S., N. Ke, et al. (1996). "The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci." Genes Dev 10(5): 634-645. http://www.ncbi.nlm.nih.gov/pubmed/8598292.