Stimuli reported to trigger increased mobile DNA activities

Organism

Stimulus

Reference(s)

Bacteria

Bacterium Deinococcus geothermalis

Oxidative stress

(Lee, Choo et al. 2020; Lee, Bae et al. 2021)

Bacterium Geobacillus kaustophilus

Heat stress

(Suzuki, Taketani et al. 2021)

Bacterium Cupriavidus metallidurans

Zinc exposure

(Vandecraen, Monsieurs et al. 2016)

Fungi

Yeast Saccharomyces cerevisae

Adenine starvation

(Todeschini, Morillon et al. 2005; Servant, Pennetier et al. 2008)

Yeast Saccharomyces cerevisae

Ionizing radiation

(Sacerdot, Mercier et al. 2005)

Yeast Saccharomyces cerevisae

Interspecifc hybridization

(Smukowski Heil, Patterson et al. 2021)

Yeast Schizosaccharomyces pombe

Environmental stress (heavy metals, caffeine, and the plasticizer phthalate)

(Esnault, Lee et al. 2019)

Yeast Candida albicans

Anti-fungal medication Miconazole

(Zhu, Yan et al. 2014)

Fungal pathogen Magnaporthe oryzae

Heat shock, copper stress

(Chadha and Sharma 2014)

Aspergillus oryzae

CuSO stress, heat shock for conidia (strong effect), acidic environment, oxidative stress, and UV irradiation (weak effect)

(Ogasawara, Obata et al. 2009)

Wheat fungal pathogen Zymoseptoria tritici

Nutrient starvation, host infection stress

(Fouché, Badet et al. 2020)

Algae

Photosynthetic coral symbiont Symbiodinium microadriaticum

Heat stress

(Chen, Cui et al. 2018)

Diatom Phaeodactylum tricornutum

 

Nitrate limitation, exposure to diatom-derived reactive aldehydes that induce stress responses and cell death

(Maumus, Allen et al. 2009)

Plants

Oats

Biotic and abiotic stresses, including UV light, wounding, salicylic acid, and fungal attack

(Kimura, Tosa et al. 2001; Chenais, Caruso et al. 2012; Pourrajab and Hekmatimoghaddam 2021)

Wheat (Triticum durum L.)

Salt and light stress

(Woodrow, Pontecorvo et al. 2011)

Solanaceae

Stress, hormones

(Grandbastien, Audeon et al. 2005; Grandbastien 2015)

Solanum chilense

“Multiple stress-related signalling molecules”

(Salazar, González et al. 2007)

Tomato

Drought stresss and abscisic acid signalling.

(Benoit, Drost et al. 2019)

Tobacco, tomatoes

Low temperature

(Pourrajab and Hekmatimoghaddam 2021)

Tobacco

Fungal attack

(Pourrajab and Hekmatimoghaddam 2021)

Tobacco

Tissue culture growth, wounding and methyl jasmonate

(Hirochika 1993; Takeda, Sugimoto et al. 1998)

Tobacco

The toxic fungal elicitor cryptogein and reactive oxygen species

(Anca, Fromentin et al. 2014)

Brassica

Heat stress

(Pietzenuk, Markus et al. 2016)

Arabidopsis

Heat stress

(Cavrak, Lettner et al. 2014; Matsunaga, Ohama et al. 2015; Ito, Kim et al. 2016; Masuda, Nozawa et al. 2017) (Gaubert, Sanchez et al. 2017)

Arabidopsis

Tissue culture growth

(Steimer, Amedeo et al. 2000)

Arabidopsis

Autopolyploidy

(Baduel, Quadrana et al. 2019)

Antirrhinum majus

Low temperature

(Pourrajab and Hekmatimoghaddam 2021)

Sunflowers

Interspecific hybridization

(Michalak 2010)

Andropogoneae (maize and sorghum)

Polyploidy

(Ramachandran, McKain et al. 2020)

Rice

Hybridization with Zizania

(Wang, Wang et al. 2010)

Rice

Early embryo development, tissue culture growth, stresses of gamma-ray irradiation, and high hydrostatic pressure

(Hirochika, Sugimoto et al. 1996; Teramoto, Tsukiyama et al. 2014)

Rice

Etoposide DNA damage

(Yang, Yu et al. 2012)

Maize

Roundup herbicide stress

(Tyczewska, Gracz-Bernaciak et al. 2021)

Maize

Viral infection

(Johns, Mottinger et al. 1985; Paszkowski 2015)

Metazoa

Nematode Caenorhabditis elegans

Heat shock (males only)

(Kurhanewicz, Dinwiddie et al. 2020)

Drosophila

Heat shock

(Jardim, Schuch et al. 2015; Pereira, Stoffel et al. 2018)

Drosophila

Geographic isolation on volcanic islands and stresses from vulcanism

(Craddock 2016)

Drosophila

Interspecific hybridization

(Carnelossi, Lerat et al. 2014; Romero-Soriano, Burlet et al. 2016; Romero-Soriano and Garcia Guerreiro 2016; Gámez-Visairas, Romero-Soriano et al. 2020)

Vertebrates

 

(Pappalardo, Ferrito et al. 2021)

Antarctic teleost genus Trematomu

Cold shock

(Auvinet, Graca et al. 2018)

Human cancer cells

Arsenic, mercury, chemotherapy

(Habibi, Shokrgozar et al. 2014; Karimi, Madjd et al. 2014; Clapes, Polyzou et al. 2021)

 

 

REFERENCES

 

Anca, I. A., J. Fromentin, et al. (2014). "Different tobacco retrotransposons are specifically modulated by the elicitor cryptogein and reactive oxygen species." J Plant Physiol 171(16): 1533-1540. https://pubmed.ncbi.nlm.nih.gov/25128785/

Auvinet, J., P. Graca, et al. (2018). "Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus." BMC Genomics 19(1): 339. https://pubmed.ncbi.nlm.nih.gov/29739320/

Baduel, P., L. Quadrana, et al. (2019). "Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation." Nat Commun 10(1): 5818. https://pubmed.ncbi.nlm.nih.gov/31862875/

Benoit, M., H. G. Drost, et al. (2019). "Environmental and epigenetic regulation of Rider retrotransposons in tomato." PLoS Genet 15(9): e1008370. https://pubmed.ncbi.nlm.nih.gov/31525177/

Carnelossi, E. A., E. Lerat, et al. (2014). "Specific activation of an I-like element in Drosophila interspecific hybrids." Genome Biol Evol 6(7): 1806-1817. https://pubmed.ncbi.nlm.nih.gov/24966182/

Cavrak, V. V., N. Lettner, et al. (2014). "How a retrotransposon exploits the plant's heat stress response for its activation." PLoS Genet 10(1): e1004115. https://pubmed.ncbi.nlm.nih.gov/24497839/

Chadha, S. and M. Sharma (2014). "Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae." PLoS One 9(4): e94415. https://pubmed.ncbi.nlm.nih.gov/24709911/

Chen, J. E., G. Cui, et al. (2018). "Recent expansion of heat-activated retrotransposons in the coral symbiont Symbiodinium microadriaticum." ISME J 12(2): 639-643. https://pubmed.ncbi.nlm.nih.gov/29053149/

Chenais, B., A. Caruso, et al. (2012). "The impact of transposable elements on eukaryotic genomes: From genome size increase to genetic adaptation to stressful environments." Gene 509(1): 7-15. https://pubmed.ncbi.nlm.nih.gov/22921893/

Clapes, T., A. Polyzou, et al. (2021). "Chemotherapy-induced transposable elements activate MDA5 to enhance haematopoietic regeneration." Nat Cell Biol 23(7): 704-717. https://pubmed.ncbi.nlm.nih.gov/34253898/

Craddock, E. M. (2016). "Profuse evolutionary diversification and speciation on volcanic islands: transposon instability and amplification bursts explain the genetic paradox." Biol Direct 11: 44. https://pubmed.ncbi.nlm.nih.gov/27600528/

Esnault, C., M. Lee, et al. (2019). "Transposable element insertions in fission yeast drive adaptation to environmental stress." Genome Res 29(1): 85-95. https://pubmed.ncbi.nlm.nih.gov/30541785/

Fouché, S., T. Badet, et al. (2020). "Stress-Driven Transposable Element De-repression Dynamics and Virulence Evolution in a Fungal Pathogen." Mol Biol Evol 37(1): 221-239. https://pubmed.ncbi.nlm.nih.gov/31553475/

Gámez-Visairas, V., V. Romero-Soriano, et al. (2020). "Drosophila Interspecific Hybridization Causes A Deregulation of the piRNA Pathway Genes." Genes (Basel) 11(2). https://pubmed.ncbi.nlm.nih.gov/32092860/

Gaubert, H., D. H. Sanchez, et al. (2017). "Developmental Restriction of Retrotransposition Activated in Arabidopsis by Environmental Stress." Genetics 207(2): 813-821. https://pubmed.ncbi.nlm.nih.gov/28774882/

Grandbastien, M. A. (2015). "LTR retrotransposons, handy hitchhikers of plant regulation and stress response." Biochim Biophys Acta 1849(4): 403-416. https://pubmed.ncbi.nlm.nih.gov/25086340/

Grandbastien, M. A., C. Audeon, et al. (2005). "Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae." Cytogenet Genome Res 110(1-4): 229-241. https://pubmed.ncbi.nlm.nih.gov/16093677/

Habibi, L., M. A. Shokrgozar, et al. (2014). "Mercury specifically induces LINE-1 activity in a human neuroblastoma cell line." Mutat Res Genet Toxicol Environ Mutagen 759: 9-20. https://pubmed.ncbi.nlm.nih.gov/24240092/

Hirochika, H. (1993). "Activation of tobacco retrotransposons during tissue culture." Embo J 12(6): 2521-2528. https://pubmed.ncbi.nlm.nih.gov/8389699/

Hirochika, H., K. Sugimoto, et al. (1996). "Retrotransposons of rice involved in mutations induced by tissue culture." Proc Natl Acad Sci U S A 93(15): 7783-7788. https://pubmed.ncbi.nlm.nih.gov/8755553/

Ito, H., J. M. Kim, et al. (2016). "A Stress-Activated Transposon in Arabidopsis Induces Transgenerational Abscisic Acid Insensitivity." Sci Rep 6: 23181. https://pubmed.ncbi.nlm.nih.gov/26976262/

Jardim, S. S., A. P. Schuch, et al. (2015). "Effects of heat and UV radiation on the mobilization of transposon mariner-Mos1." Cell Stress Chaperones 20(5): 843-851. https://pubmed.ncbi.nlm.nih.gov/26092118/

Johns, M. A., J. Mottinger, et al. (1985). "A low copy number, copia-like transposon in maize." EMBO J 4(5): 1093-1101. https://pubmed.ncbi.nlm.nih.gov/2988938/

Karimi, A., Z. Madjd, et al. (2014). "Evaluating the extent of LINE-1 mobility following exposure to heavy metals in HepG2 cells." Biol Trace Elem Res 160(1): 143-151. https://pubmed.ncbi.nlm.nih.gov/24894828/

Kimura, Y., Y. Tosa, et al. (2001). "OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses." Plant Cell Physiol 42(12): 1345-1354. https://pubmed.ncbi.nlm.nih.gov/11773527/

Kurhanewicz, N. A., D. Dinwiddie, et al. (2020). "Elevated Temperatures Cause Transposon-Associated DNA Damage in C. elegans Spermatocytes." Curr Biol 30(24): 5007-5017 e5004. https://pubmed.ncbi.nlm.nih.gov/33065011/

Lee, C., M. K. Bae, et al. (2021). "Genome Plasticity by Insertion Sequences Learned From a Case of Radiation-Resistant Bacterium Deinococcus geothermalis." Bioinform Biol Insights 15: 11779322211037437. https://pubmed.ncbi.nlm.nih.gov/34413635/

Lee, C., K. Choo, et al. (2020). "Active Transposition of Insertion Sequences by Oxidative Stress in Deinococcus geothermalis." Front Microbiol 11: 558747. https://pubmed.ncbi.nlm.nih.gov/33224109/

Masuda, S., K. Nozawa, et al. (2017). "Characterization of a heat-activated retrotransposon in natural accessions of Arabidopsis thaliana." Genes Genet Syst 91(6): 293-299. https://pubmed.ncbi.nlm.nih.gov/27980240/

Matsunaga, W., N. Ohama, et al. (2015). "A small RNA mediated regulation of a stress-activated retrotransposon and the tissue specific transposition during the reproductive period in Arabidopsis." Front Plant Sci 6: 48. https://pubmed.ncbi.nlm.nih.gov/25709612/

Maumus, F., A. E. Allen, et al. (2009). "Potential impact of stress activated retrotransposons on genome evolution in a marine diatom." BMC Genomics 10: 624. https://pubmed.ncbi.nlm.nih.gov/20028555/

Michalak, P. (2010). "An eruption of mobile elements in genomes of hybrid sunflowers." Heredity (Edinb) 104(4): 329-330. https://pubmed.ncbi.nlm.nih.gov/20068587/

Ogasawara, H., H. Obata, et al. (2009). "Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stress conditions." Fungal Genet Biol 46(6-7): 441-449. https://pubmed.ncbi.nlm.nih.gov/19269345/

Pappalardo, A. M., V. Ferrito, et al. (2021). "Transposable Elements and Stress in Vertebrates: An Overview." Int J Mol Sci 22(4). https://pubmed.ncbi.nlm.nih.gov/33671215/

Paszkowski, J. (2015). "Controlled activation of retrotransposition for plant breeding." Curr Opin Biotechnol 32: 200-206. https://pubmed.ncbi.nlm.nih.gov/25615932/

Pereira, C. M., T. J. R. Stoffel, et al. (2018). "The somatic mobilization of transposable element mariner-Mos1 during the Drosophila lifespan and its biological consequences." Gene 679: 65-72. https://pubmed.ncbi.nlm.nih.gov/30171941/

Pietzenuk, B., C. Markus, et al. (2016). "Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements." Genome Biol 17(1): 209. https://pubmed.ncbi.nlm.nih.gov/27729060/

Pourrajab, F. and S. Hekmatimoghaddam (2021). "Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials)." Heliyon 7(1): e06029. https://pubmed.ncbi.nlm.nih.gov/33532648/

Ramachandran, D., M. R. McKain, et al. (2020). "Evolutionary Dynamics of Transposable Elements Following a Shared Polyploidization Event in the Tribe Andropogoneae." G3 (Bethesda) 10(12): 4387-4398. https://pubmed.ncbi.nlm.nih.gov/32988994/

Romero-Soriano, V., N. Burlet, et al. (2016). "Drosophila Females Undergo Genome Expansion after Interspecific Hybridization." Genome Biol Evol 8(3): 556-561. https://pubmed.ncbi.nlm.nih.gov/26872773/

Romero-Soriano, V. and M. P. Garcia Guerreiro (2016). "Expression of the Retrotransposon Helena Reveals a Complex Pattern of TE Deregulation in Drosophila Hybrids." PLoS One 11(1): e0147903. https://pubmed.ncbi.nlm.nih.gov/26812285/

Sacerdot, C., G. Mercier, et al. (2005). "Impact of ionizing radiation on the life cycle of Saccharomyces cerevisiae Ty1 retrotransposon." Yeast 22(6): 441-455. https://pubmed.ncbi.nlm.nih.gov/15849797/

Salazar, M., E. González, et al. (2007). "The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules." Plant Cell Rep 26(10): 1861-1868. https://pubmed.ncbi.nlm.nih.gov/17583815/

Servant, G., C. Pennetier, et al. (2008). "Remodeling yeast gene transcription by activating the Ty1 long terminal repeat retrotransposon under severe adenine deficiency." Mol Cell Biol 28(17): 5543-5554. https://pubmed.ncbi.nlm.nih.gov/18591253/

Smukowski Heil, C., K. Patterson, et al. (2021). "Transposable Element Mobilization in Interspecific Yeast Hybrids." Genome Biol Evol 13(3). https://pubmed.ncbi.nlm.nih.gov/33595639/

Steimer, A., P. Amedeo, et al. (2000). "Endogenous targets of transcriptional gene silencing in Arabidopsis." Plant Cell 12(7): 1165-1178. https://pubmed.ncbi.nlm.nih.gov/10899982/

Suzuki, H., T. Taketani, et al. (2021). "Frequent Transposition of Multiple Insertion Sequences in Geobacillus kaustophilus HTA426." Front Microbiol 12: 650461. https://pubmed.ncbi.nlm.nih.gov/33841375/

Takeda, S., K. Sugimoto, et al. (1998). "Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate." Plant Mol Biol 36(3): 365-376. https://pubmed.ncbi.nlm.nih.gov/9484477/

Teramoto, S., T. Tsukiyama, et al. (2014). "Early embryogenesis-specific expression of the rice transposon Ping enhances amplification of the MITE mPing." PLoS Genet 10(6): e1004396. https://pubmed.ncbi.nlm.nih.gov/24921928/

Todeschini, A. L., A. Morillon, et al. (2005). "Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae." Mol Cell Biol 25(17): 7459-7472. https://pubmed.ncbi.nlm.nih.gov/16107695/

Tyczewska, A., J. Gracz-Bernaciak, et al. (2021). "Herbicide stress-induced DNA methylation changes in two Zea mays inbred lines differing in Roundup® resistance." J Appl Genet 62(2): 235-248. https://pubmed.ncbi.nlm.nih.gov/33512663/

Vandecraen, J., P. Monsieurs, et al. (2016). "Zinc-Induced Transposition of Insertion Sequence Elements Contributes to Increased Adaptability of Cupriavidus metallidurans." Front Microbiol 7: 359. https://pubmed.ncbi.nlm.nih.gov/27047473/

Wang, N., H. Wang, et al. (2010). "Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with Zizania latifolia." BMC Plant Biol 10: 190. https://pubmed.ncbi.nlm.nih.gov/20796287/

Woodrow, P., G. Pontecorvo, et al. (2011). "Ttd1a promoter is involved in DNA-protein binding by salt and light stresses." Mol Biol Rep 38(6): 3787-3794. https://pubmed.ncbi.nlm.nih.gov/21104438/

Yang, X., Y. Yu, et al. (2012). "Changes in DNA methylation and transgenerational mobilization of a transposable element (mPing) by the topoisomerase II inhibitor, etoposide, in rice." BMC Plant Biol 12: 48. https://pubmed.ncbi.nlm.nih.gov/22482475/

Zhu, C. X., L. Yan, et al. (2014). "Transposition of the Zorro2 retrotransposon is activated by miconazole in Candida albicans." Biol Pharm Bull 37(1): 37-43. https://pubmed.ncbi.nlm.nih.gov/24389479/