Stimuli reported to trigger increased
mobile DNA activities |
||
Organism |
Stimulus |
Reference(s) |
Bacteria |
||
Bacterium
Deinococcus
geothermalis
|
Oxidative stress |
(Lee, Choo et al. 2020; Lee,
Bae et al. 2021) |
Bacterium
Geobacillus kaustophilus
|
Heat stress |
(Suzuki, Taketani et al. 2021) |
Bacterium
Cupriavidus metallidurans
|
Zinc exposure |
(Vandecraen, Monsieurs et al.
2016) |
Fungi |
||
Yeast
Saccharomyces cerevisae
|
Adenine starvation |
(Todeschini, Morillon et al.
2005; Servant, Pennetier et al. 2008) |
Yeast
Saccharomyces cerevisae
|
Ionizing radiation |
(Sacerdot, Mercier et al. 2005) |
Yeast
Saccharomyces cerevisae
|
Interspecifc hybridization |
(Smukowski Heil, Patterson et
al. 2021) |
Yeast
Schizosaccharomyces pombe
|
Environmental stress (heavy metals,
caffeine, and the plasticizer phthalate) |
(Esnault, Lee et al. 2019) |
Yeast
Candida albicans
|
Anti-fungal medication Miconazole |
(Zhu, Yan et al. 2014) |
Fungal
pathogen Magnaporthe oryzae |
Heat shock, copper stress |
(Chadha and Sharma 2014) |
Aspergillus
oryzae |
CuSO stress, heat shock for conidia
(strong effect), acidic environment, oxidative stress, and
UV irradiation (weak effect) |
(Ogasawara, Obata et al. 2009) |
Wheat fungal pathogen Zymoseptoria
tritici |
Nutrient starvation, host infection
stress |
(Fouché, Badet et al. 2020) |
Algae |
||
Photosynthetic
coral symbiont Symbiodinium microadriaticum
|
Heat stress |
(Chen, Cui et al. 2018) |
Diatom Phaeodactylum
tricornutum |
Nitrate limitation, exposure to
diatom-derived reactive aldehydes that induce stress
responses and cell death |
(Maumus, Allen et al. 2009) |
Plants |
||
Oats |
Biotic and abiotic stresses, including
UV light, wounding, salicylic acid, and fungal attack |
(Kimura, Tosa et al. 2001;
Chenais, Caruso et al. 2012; Pourrajab and
Hekmatimoghaddam 2021) |
Wheat (Triticum durum L.) |
Salt and light stress |
(Woodrow, Pontecorvo et al.
2011) |
Solanaceae |
Stress, hormones |
(Grandbastien, Audeon et al.
2005; Grandbastien 2015) |
Solanum
chilense |
“Multiple stress-related signalling
molecules” |
(Salazar, González et al. 2007) |
Tomato |
Drought stresss and abscisic acid
signalling. |
(Benoit, Drost et al. 2019) |
Tobacco, tomatoes |
Low temperature |
(Pourrajab and Hekmatimoghaddam
2021) |
Tobacco |
Fungal attack |
(Pourrajab and Hekmatimoghaddam
2021) |
Tobacco |
Tissue culture growth, wounding and
methyl jasmonate |
(Hirochika 1993; Takeda,
Sugimoto et al. 1998) |
Tobacco |
The toxic fungal elicitor
cryptogein and reactive oxygen species |
(Anca, Fromentin et al. 2014) |
Brassica |
Heat stress |
(Pietzenuk, Markus et al. 2016) |
Arabidopsis |
Heat stress |
(Cavrak, Lettner et al. 2014;
Matsunaga, Ohama et al. 2015; Ito, Kim et al. 2016;
Masuda, Nozawa et al. 2017)
(Gaubert, Sanchez et al. 2017) |
Arabidopsis |
Tissue culture growth |
(Steimer, Amedeo et al. 2000) |
Arabidopsis |
Autopolyploidy |
(Baduel, Quadrana et al. 2019) |
Antirrhinum majus |
Low temperature |
(Pourrajab and Hekmatimoghaddam
2021) |
Sunflowers |
Interspecific hybridization |
(Michalak 2010) |
Andropogoneae (maize and sorghum) |
Polyploidy |
(Ramachandran, McKain et al.
2020) |
Rice |
Hybridization with Zizania |
(Wang, Wang et al. 2010) |
Rice |
Early embryo development, tissue
culture growth, stresses of gamma-ray irradiation, and
high hydrostatic pressure |
(Hirochika, Sugimoto et al.
1996; Teramoto, Tsukiyama et al. 2014) |
Rice |
Etoposide DNA damage |
(Yang, Yu et al. 2012) |
Maize |
Roundup herbicide stress |
(Tyczewska, Gracz-Bernaciak et
al. 2021) |
Maize |
Viral infection |
(Johns, Mottinger et al. 1985;
Paszkowski 2015) |
Metazoa |
||
Nematode Caenorhabditis elegans |
Heat shock (males only) |
(Kurhanewicz, Dinwiddie et al.
2020)
|
Drosophila |
Heat shock |
(Jardim, Schuch et al. 2015;
Pereira, Stoffel et al. 2018) |
Drosophila |
Geographic isolation on volcanic
islands and stresses from vulcanism |
(Craddock 2016) |
Drosophila |
Interspecific hybridization |
(Carnelossi, Lerat et al. 2014;
Romero-Soriano, Burlet et al. 2016; Romero-Soriano and
Garcia Guerreiro 2016; Gámez-Visairas, Romero-Soriano et
al. 2020) |
Vertebrates |
|
(Pappalardo, Ferrito et al.
2021) |
Antarctic
teleost genus Trematomu |
Cold shock |
(Auvinet, Graca et al. 2018) |
Human
cancer cells |
Arsenic, mercury, chemotherapy |
(Habibi, Shokrgozar et al.
2014; Karimi, Madjd et al. 2014; Clapes, Polyzou et al.
2021) |
REFERENCES
Anca, I. A., J. Fromentin, et al.
(2014). "Different tobacco retrotransposons are specifically
modulated by the elicitor cryptogein and reactive oxygen
species." J Plant Physiol 171(16): 1533-1540. https://pubmed.ncbi.nlm.nih.gov/25128785/
Auvinet, J., P. Graca, et al. (2018).
"Mobilization of retrotransposons as a cause of chromosomal
diversification and rapid speciation: the case for the Antarctic
teleost genus Trematomus." BMC Genomics 19(1): 339. https://pubmed.ncbi.nlm.nih.gov/29739320/
Baduel, P., L. Quadrana, et al. (2019).
"Relaxed purifying selection in autopolyploids drives
transposable element over-accumulation which provides variants
for local adaptation." Nat Commun 10(1): 5818. https://pubmed.ncbi.nlm.nih.gov/31862875/
Benoit, M., H. G. Drost, et al. (2019).
"Environmental and epigenetic regulation of Rider
retrotransposons in tomato." PLoS Genet 15(9): e1008370. https://pubmed.ncbi.nlm.nih.gov/31525177/
Carnelossi, E. A., E. Lerat, et al.
(2014). "Specific activation of an I-like element in Drosophila
interspecific hybrids." Genome Biol Evol 6(7): 1806-1817. https://pubmed.ncbi.nlm.nih.gov/24966182/
Cavrak, V. V., N. Lettner, et al.
(2014). "How a retrotransposon exploits the plant's heat stress
response for its activation." PLoS Genet 10(1): e1004115. https://pubmed.ncbi.nlm.nih.gov/24497839/
Chadha, S. and M. Sharma (2014).
"Transposable elements as stress adaptive capacitors induce
genomic instability in fungal pathogen Magnaporthe oryzae." PLoS
One 9(4):
e94415. https://pubmed.ncbi.nlm.nih.gov/24709911/
Chen, J. E., G. Cui, et al. (2018).
"Recent expansion of heat-activated retrotransposons in the
coral symbiont Symbiodinium microadriaticum." ISME J 12(2): 639-643. https://pubmed.ncbi.nlm.nih.gov/29053149/
Chenais, B., A. Caruso, et al. (2012).
"The impact of transposable elements on eukaryotic genomes: From
genome size increase to genetic adaptation to stressful
environments." Gene 509(1): 7-15. https://pubmed.ncbi.nlm.nih.gov/22921893/
Clapes, T., A. Polyzou, et al. (2021).
"Chemotherapy-induced transposable elements activate MDA5 to
enhance haematopoietic regeneration." Nat Cell Biol 23(7): 704-717. https://pubmed.ncbi.nlm.nih.gov/34253898/
Craddock, E. M. (2016). "Profuse
evolutionary diversification and speciation on volcanic islands:
transposon instability and amplification bursts explain the
genetic paradox." Biol Direct 11: 44. https://pubmed.ncbi.nlm.nih.gov/27600528/
Esnault, C., M. Lee, et al. (2019).
"Transposable element insertions in fission yeast drive
adaptation to environmental stress." Genome Res 29(1): 85-95. https://pubmed.ncbi.nlm.nih.gov/30541785/
Fouché, S., T. Badet, et al. (2020).
"Stress-Driven Transposable Element De-repression Dynamics and
Virulence Evolution in a Fungal Pathogen." Mol Biol Evol
37(1): 221-239. https://pubmed.ncbi.nlm.nih.gov/31553475/
Gámez-Visairas, V., V. Romero-Soriano,
et al. (2020). "Drosophila Interspecific Hybridization Causes A
Deregulation of the piRNA Pathway Genes." Genes (Basel)
11(2). https://pubmed.ncbi.nlm.nih.gov/32092860/
Gaubert, H., D. H. Sanchez, et al.
(2017). "Developmental Restriction of Retrotransposition
Activated in Arabidopsis by Environmental Stress." Genetics
207(2): 813-821. https://pubmed.ncbi.nlm.nih.gov/28774882/
Grandbastien, M. A. (2015). "LTR
retrotransposons, handy hitchhikers of plant regulation and
stress response." Biochim Biophys Acta 1849(4): 403-416. https://pubmed.ncbi.nlm.nih.gov/25086340/
Grandbastien, M. A., C. Audeon, et al.
(2005). "Stress activation and genomic impact of Tnt1
retrotransposons in Solanaceae." Cytogenet Genome Res 110(1-4): 229-241. https://pubmed.ncbi.nlm.nih.gov/16093677/
Habibi, L., M. A. Shokrgozar, et al.
(2014). "Mercury specifically induces LINE-1 activity in a human
neuroblastoma cell line." Mutat Res Genet Toxicol Environ
Mutagen 759:
9-20. https://pubmed.ncbi.nlm.nih.gov/24240092/
Hirochika, H. (1993). "Activation of
tobacco retrotransposons during tissue culture." Embo J
12(6): 2521-2528. https://pubmed.ncbi.nlm.nih.gov/8389699/
Hirochika, H., K. Sugimoto, et al.
(1996). "Retrotransposons of rice involved in mutations induced
by tissue culture." Proc Natl Acad Sci U S A 93(15): 7783-7788. https://pubmed.ncbi.nlm.nih.gov/8755553/
Ito, H., J. M. Kim, et al. (2016). "A
Stress-Activated Transposon in Arabidopsis Induces
Transgenerational Abscisic Acid Insensitivity." Sci Rep
6: 23181. https://pubmed.ncbi.nlm.nih.gov/26976262/
Jardim, S. S., A. P. Schuch, et al.
(2015). "Effects of heat and UV radiation on the mobilization of
transposon mariner-Mos1." Cell Stress Chaperones 20(5): 843-851. https://pubmed.ncbi.nlm.nih.gov/26092118/
Johns, M. A., J. Mottinger, et al.
(1985). "A low copy number, copia-like transposon in maize." EMBO
J 4(5):
1093-1101. https://pubmed.ncbi.nlm.nih.gov/2988938/
Karimi, A., Z. Madjd, et al. (2014).
"Evaluating the extent of LINE-1 mobility following exposure to
heavy metals in HepG2 cells." Biol Trace Elem Res 160(1): 143-151. https://pubmed.ncbi.nlm.nih.gov/24894828/
Kimura, Y., Y. Tosa, et al. (2001).
"OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic
and biotic stresses." Plant Cell Physiol 42(12): 1345-1354. https://pubmed.ncbi.nlm.nih.gov/11773527/
Kurhanewicz, N. A., D. Dinwiddie, et
al. (2020). "Elevated Temperatures Cause Transposon-Associated
DNA Damage in C. elegans Spermatocytes." Curr Biol
30(24): 5007-5017
e5004. https://pubmed.ncbi.nlm.nih.gov/33065011/
Lee, C., M. K. Bae, et al. (2021).
"Genome Plasticity by Insertion Sequences Learned From a Case of
Radiation-Resistant Bacterium Deinococcus geothermalis." Bioinform
Biol Insights 15:
11779322211037437. https://pubmed.ncbi.nlm.nih.gov/34413635/
Lee, C., K. Choo, et al. (2020).
"Active Transposition of Insertion Sequences by Oxidative Stress
in Deinococcus geothermalis." Front Microbiol 11: 558747. https://pubmed.ncbi.nlm.nih.gov/33224109/
Masuda, S., K. Nozawa, et al. (2017).
"Characterization of a heat-activated retrotransposon in natural
accessions of Arabidopsis thaliana." Genes Genet Syst 91(6): 293-299. https://pubmed.ncbi.nlm.nih.gov/27980240/
Matsunaga, W., N. Ohama, et al. (2015).
"A small RNA mediated regulation of a stress-activated
retrotransposon and the tissue specific transposition during the
reproductive period in Arabidopsis." Front Plant Sci 6: 48. https://pubmed.ncbi.nlm.nih.gov/25709612/
Maumus, F., A. E. Allen, et al. (2009).
"Potential impact of stress activated retrotransposons on genome
evolution in a marine diatom." BMC Genomics 10: 624. https://pubmed.ncbi.nlm.nih.gov/20028555/
Michalak, P. (2010). "An eruption of
mobile elements in genomes of hybrid sunflowers." Heredity
(Edinb) 104(4):
329-330. https://pubmed.ncbi.nlm.nih.gov/20068587/
Ogasawara, H., H. Obata, et al. (2009).
"Crawler, a novel Tc1/mariner-type transposable element in
Aspergillus oryzae transposes under stress conditions." Fungal
Genet Biol 46(6-7):
441-449. https://pubmed.ncbi.nlm.nih.gov/19269345/
Pappalardo, A. M., V. Ferrito, et al.
(2021). "Transposable Elements and Stress in Vertebrates: An
Overview." Int J Mol Sci 22(4). https://pubmed.ncbi.nlm.nih.gov/33671215/
Paszkowski, J. (2015). "Controlled
activation of retrotransposition for plant breeding." Curr
Opin Biotechnol 32:
200-206. https://pubmed.ncbi.nlm.nih.gov/25615932/
Pereira, C. M., T. J. R. Stoffel, et
al. (2018). "The somatic mobilization of transposable element
mariner-Mos1 during the Drosophila lifespan and its biological
consequences." Gene 679: 65-72. https://pubmed.ncbi.nlm.nih.gov/30171941/
Pietzenuk, B., C. Markus, et al.
(2016). "Recurrent evolution of heat-responsiveness in
Brassicaceae COPIA elements." Genome Biol 17(1): 209. https://pubmed.ncbi.nlm.nih.gov/27729060/
Pourrajab, F. and S. Hekmatimoghaddam
(2021). "Transposable elements, contributors in the evolution of
organisms (from an arms race to a source of raw materials)." Heliyon
7(1): e06029. https://pubmed.ncbi.nlm.nih.gov/33532648/
Ramachandran, D., M. R. McKain, et al.
(2020). "Evolutionary Dynamics of Transposable Elements
Following a Shared Polyploidization Event in the Tribe
Andropogoneae." G3 (Bethesda) 10(12): 4387-4398. https://pubmed.ncbi.nlm.nih.gov/32988994/
Romero-Soriano, V., N. Burlet, et al.
(2016). "Drosophila Females Undergo Genome Expansion after
Interspecific Hybridization." Genome Biol Evol 8(3): 556-561. https://pubmed.ncbi.nlm.nih.gov/26872773/
Romero-Soriano, V. and M. P. Garcia
Guerreiro (2016). "Expression of the Retrotransposon Helena
Reveals a Complex Pattern of TE Deregulation in Drosophila
Hybrids." PLoS One 11(1): e0147903. https://pubmed.ncbi.nlm.nih.gov/26812285/
Sacerdot, C., G. Mercier, et al.
(2005). "Impact of ionizing radiation on the life cycle of
Saccharomyces cerevisiae Ty1 retrotransposon." Yeast 22(6): 441-455. https://pubmed.ncbi.nlm.nih.gov/15849797/
Salazar, M., E. González, et al.
(2007). "The promoter of the TLC1.1 retrotransposon from Solanum
chilense is activated by multiple stress-related signaling
molecules." Plant Cell Rep 26(10): 1861-1868. https://pubmed.ncbi.nlm.nih.gov/17583815/
Servant, G., C. Pennetier, et al.
(2008). "Remodeling yeast gene transcription by activating the
Ty1 long terminal repeat retrotransposon under severe adenine
deficiency." Mol Cell Biol 28(17): 5543-5554. https://pubmed.ncbi.nlm.nih.gov/18591253/
Smukowski Heil, C., K. Patterson, et
al. (2021). "Transposable Element Mobilization in Interspecific
Yeast Hybrids." Genome Biol Evol 13(3). https://pubmed.ncbi.nlm.nih.gov/33595639/
Steimer, A., P. Amedeo, et al. (2000).
"Endogenous targets of transcriptional gene silencing in
Arabidopsis." Plant Cell 12(7): 1165-1178. https://pubmed.ncbi.nlm.nih.gov/10899982/
Suzuki, H., T. Taketani, et al. (2021).
"Frequent Transposition of Multiple Insertion Sequences in
Geobacillus kaustophilus HTA426." Front Microbiol 12: 650461. https://pubmed.ncbi.nlm.nih.gov/33841375/
Takeda, S., K. Sugimoto, et al. (1998).
"Transcriptional activation of the tobacco retrotransposon Tto1
by wounding and methyl jasmonate." Plant Mol Biol 36(3): 365-376. https://pubmed.ncbi.nlm.nih.gov/9484477/
Teramoto, S., T. Tsukiyama, et al.
(2014). "Early embryogenesis-specific expression of the rice
transposon Ping enhances amplification of the MITE mPing." PLoS
Genet 10(6):
e1004396. https://pubmed.ncbi.nlm.nih.gov/24921928/
Todeschini, A. L., A. Morillon, et al.
(2005). "Severe adenine starvation activates Ty1 transcription
and retrotransposition in Saccharomyces cerevisiae." Mol
Cell Biol 25(17):
7459-7472. https://pubmed.ncbi.nlm.nih.gov/16107695/
Tyczewska, A., J. Gracz-Bernaciak, et
al. (2021). "Herbicide stress-induced DNA methylation changes in
two Zea mays inbred lines differing in Roundup® resistance." J
Appl Genet 62(2):
235-248. https://pubmed.ncbi.nlm.nih.gov/33512663/
Vandecraen, J., P. Monsieurs, et al.
(2016). "Zinc-Induced Transposition of Insertion Sequence
Elements Contributes to Increased Adaptability of Cupriavidus
metallidurans." Front Microbiol 7: 359. https://pubmed.ncbi.nlm.nih.gov/27047473/
Wang, N., H. Wang, et al. (2010).
"Transpositional reactivation of the Dart transposon family in
rice lines derived from introgressive hybridization with Zizania
latifolia." BMC Plant Biol 10: 190. https://pubmed.ncbi.nlm.nih.gov/20796287/
Woodrow, P., G. Pontecorvo, et al.
(2011). "Ttd1a promoter is involved in DNA-protein binding by
salt and light stresses." Mol Biol Rep 38(6): 3787-3794. https://pubmed.ncbi.nlm.nih.gov/21104438/
Yang, X., Y. Yu, et al. (2012).
"Changes in DNA methylation and transgenerational mobilization
of a transposable element (mPing) by the topoisomerase II
inhibitor, etoposide, in rice." BMC Plant Biol 12: 48. https://pubmed.ncbi.nlm.nih.gov/22482475/
Zhu, C. X., L. Yan, et al. (2014).
"Transposition of the Zorro2 retrotransposon is activated by
miconazole in Candida albicans." Biol Pharm Bull 37(1): 37-43. https://pubmed.ncbi.nlm.nih.gov/24389479/