No Genome is an Island Extra References 9

 

9. Crossing Cellular, Taxonomic and Weissmann barriers: extracellular transport vesicles (EVs) for protein and nucleic acid transfers between cells.

 

·      9.A. Diversity and ubiquity of EVs produced by all cells examined; protein, RNA and DNA cargoes. (Deatherage and Cookson 2012; Yanez-Mo, Siljander et al. 2015; Ratajczak and Ratajczak 2016)

o   Marine EVs (Biller, Schubotz et al. 2014; Soler, Krupovic et al. 2015; Biller, McDaniel et al. 2017)

 

o   Protein cargoes. Proteins in EVs can be of any type. Many are soluble in the enclosed EV lumen, where they are protected from external proteolytic activities. Some cargo proteins may be embedded in the membrane and exposed to the surrounding environment, where they can be recognized by specific receptors on target cells. antigen presentation (Lotvall and Valadi 2007) (Valadi, Ekstrom et al. 2007) (Shenoda and Ajit 2016). In some cases, EVs can use the same cell surface receptors as viruses (van Dongen, Masoumi et al. 2016).

 

o   DNA cargoes. As mentioned, ocean EVs contain bacterial DNA. Other bacterial and archaeal EVs have been found to contain plasmids and viral genomes as well as chromosomal DNA that can function in intercellular DNA transfer. (Metcalf, Zhang et al. 1997; Gaudin, Krupovic et al. 2014). A hyperthermophilic Archaea was particularly interesting because its EVs collectively contained all of the genome except for a 9.4 kb region, which the authors explained as a consequence of the DNA delivery process.(Choi, Kwon et al. 2015)

 

o   Plasmid DNA transfer. In addition to observation of EV DNA cargo transfers by fluorescence and PCR analysis, a number of cases of transfers of plasmid DNA via EVs have been directly documented by genetic experiments in prokaryotes:  between E. coli and from E. coli to Salmonella typhimurium (Yaron, Kolling et al. 2000), between Thermococcales kodakaraensis (Archaea) (Gaudin, Gauliard et al. 2013), and between Acinetobacter baylyi as well as from Acinetobacter baylyi to E. coli (Fulsundar, Harms et al. 2014).

 

·      9.B. Regulated and functional intercellular communication by EV cargo delivery. (Zaborowski, Balaj et al. 2015)

o   Bacterial regulatory proteins and intercellular signals documented to affect EV biogenesis and contents.

§  P. aeruginosa AlgU (Macdonald and Kuehn 2013)

§  Burkholderia quorum-sensing (Kang, Goo et al. 2017)

§  Shigella flexneri virulence plasmid-encoded VirK (Sidik, Kottwitz et al. 2014)

§  Group A Streptococcus CovRS two-component system (Resch, Tsatsaronis et al. 2016)

§  Vibrio fischeri RscS sensor kinase (Shibata and Visick 2012)

§  Serratia marcescens Rcs phosphorelay (McMahon, Castelli et al. 2012).

 

o   Adaptive EV roles in bacterial populations.

§  Decoys to inhibit bacteriophage infection of Vibrio cholerae (Reyes-Robles, Dillard et al. 2018)

§  E. coli resistance to antimicrobial peptides (AMPs) polymyxin B and colistin (Manning and Kuehn 2011)

§  Biofilm formation by Helicobacter pylori (Grande, Di Marcantonio et al. 2015), Streptoccus mutans (Liao, Klein et al. 2014), Pseudomonas putida (Baumgarten, Sperling et al. 2012), and the oral bacteria Porphyromonas gingivalis and Treponema denticola (Zhu, Dashper et al. 2013)

§  Transmission of the hydrophobic CAI-1 signal molecule between Vibrio harveyi cells (Brameyer, Plener et al. 2018)

§  Delivering degradative enzymes (Schwechheimer, Sullivan et al. 2013)

§  Acquisition of nutrients (Kulp and Kuehn 2010) and minerals such as iron (Lin, Zhang et al. 2017)

§  Predation by Myxococcus xanthus (Evans, Davey et al. 2012)

 

o   Immune system outcomes (“Yin/Yang effects”) of EV transmission (Zhang, Jiang et al. 2018).  One or both of these functional consequences have been reported for human pathogens Staphylococcus aureus (Song, Sabharwal et al. 2014) (Askarian, Lapek et al. 2018), Yersinia pestis (Eddy, Gielda et al. 2014), and Acinetobacter baumanii (Jin, Kwon et al. 2011), and for the plant pathogen Xylella fastidiosa (Ionescu, Zaini et al. 2014).

 

o   Animal (largely human) biology subject to EV transmission

§  Paracrine signalling by stem cells (Camussi, Deregibus et al. 2013)

§  Developmental cellular differentiation  (Urbanelli, Magini et al. 2013; Quesenberry, Aliotta et al. 2015)

§  Cardiac physiology (Ibrahim and Marban 2016)

§  Nervous system signalling (Pegtel, Peferoen et al. 2014; Ridder, Keller et al. 2014; Batiz, Castro et al. 2015; Zhang and Yang 2017)

§  Diverse stress responses (Eldh, Ekstrom et al. 2010)

§  Cellular senescence and apoptosis (Urbanelli, Buratta et al. 2016)

§  Immune system activity (Lotvall and Valadi 2007; Valadi, Ekstrom et al. 2007) (Ludwig and Giebel 2012; Shenoda and Ajit 2016)

§  Innate immunity (Buck, Coakley et al. 2014; Benito-Martin, Di Giannatale et al. 2015)

§  Tumor cell proliferation (Cai, Han et al. 2013; Mu, Rana et al. 2013; Ogorevc, Kralj-Iglic et al. 2013; He, Calore et al. 2014; Melo, Sugimoto et al. 2014; Berrondo, Flax et al. 2016; Fonseca, Vardaki et al. 2016; Kawamura, Yamamoto et al. 2017).

 

o   Uptake of exogenous DNA by sperm (Smith and Spadafora 2005; Spadafora 2007; Zhao, Yu et al. 2012; Arias, Sanchez-Villalba et al. 2017).

 

o   Reverse Transcriptase required for early embryonic development before being silenced in differentiated cells (Pittoggi, Beraldi et al. 2006; Spadafora 2015)

o    

REFERENCES

 

Arias, M. E., E. Sanchez-Villalba, et al. (2017). "Effect of transfection and co-incubation of bovine sperm with exogenous DNA on sperm quality and functional parameters for its use in sperm-mediated gene transfer." Zygote 25(1): 85-97. http://www.ncbi.nlm.nih.gov/pubmed/27928970.

Askarian, F., J. D. Lapek, Jr., et al. (2018). "Staphylococcus aureus Membrane-Derived Vesicles Promote Bacterial Virulence and Confer Protective Immunity in Murine Infection Models." Front Microbiol 9: 262. http://www.ncbi.nlm.nih.gov/pubmed/29515544.

Batiz, L. F., M. A. Castro, et al. (2015). "Exosomes as Novel Regulators of Adult Neurogenic Niches." Front Cell Neurosci 9: 501. http://www.ncbi.nlm.nih.gov/pubmed/26834560.

Baumgarten, T., S. Sperling, et al. (2012). "Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation." Appl Environ Microbiol 78(17): 6217-6224. http://www.ncbi.nlm.nih.gov/pubmed/22752175.

Benito-Martin, A., A. Di Giannatale, et al. (2015). "The new deal: a potential role for secreted vesicles in innate immunity and tumor progression." Front Immunol 6: 66. http://www.ncbi.nlm.nih.gov/pubmed/25759690.

Berrondo, C., J. Flax, et al. (2016). "Expression of the Long Non-Coding RNA HOTAIR Correlates with Disease Progression in Bladder Cancer and Is Contained in Bladder Cancer Patient Urinary Exosomes." PLoS One 11(1): e0147236. http://www.ncbi.nlm.nih.gov/pubmed/26800519.

Biller, S. J., L. D. McDaniel, et al. (2017). "Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates." ISME J 11(2): 394-404. http://www.ncbi.nlm.nih.gov/pubmed/27824343.

Biller, S. J., F. Schubotz, et al. (2014). "Bacterial vesicles in marine ecosystems." Science 343(6167): 183-186. http://www.ncbi.nlm.nih.gov/pubmed/24408433.

Brameyer, S., L. Plener, et al. (2018). "Outer membrane vesicles facilitate trafficking of the hydrophobic signaling molecule CAI-1 between Vibrio harveyi cells." J Bacteriol. http://www.ncbi.nlm.nih.gov/pubmed/29555694.

Buck, A. H., G. Coakley, et al. (2014). "Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity." Nat Commun 5: 5488. http://www.ncbi.nlm.nih.gov/pubmed/25421927.

Cai, J., Y. Han, et al. (2013). "Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells." J Mol Cell Biol 5(4): 227-238. http://www.ncbi.nlm.nih.gov/pubmed/23580760.

Camussi, G., M. C. Deregibus, et al. (2013). "Role of stem-cell-derived microvesicles in the paracrine action of stem cells." Biochem Soc Trans 41(1): 283-287. http://www.ncbi.nlm.nih.gov/pubmed/23356298.

Choi, D. H., Y. M. Kwon, et al. (2015). "Extracellular Vesicles of the Hyperthermophilic Archaeon "Thermococcus onnurineus" NA1T." Appl Environ Microbiol 81(14): 4591-4599. http://www.ncbi.nlm.nih.gov/pubmed/25934618.

Deatherage, B. L. and B. T. Cookson (2012). "Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life." Infect Immun 80(6): 1948-1957. http://www.ncbi.nlm.nih.gov/pubmed/22409932.

Eddy, J. L., L. M. Gielda, et al. (2014). "Production of outer membrane vesicles by the plague pathogen Yersinia pestis." PLoS One 9(9): e107002. http://www.ncbi.nlm.nih.gov/pubmed/25198697.

Eldh, M., K. Ekstrom, et al. (2010). "Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA." PLoS One 5(12): e15353. http://www.ncbi.nlm.nih.gov/pubmed/21179422.

Evans, A. G., H. M. Davey, et al. (2012). "Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo." Microbiology 158(Pt 11): 2742-2752. http://www.ncbi.nlm.nih.gov/pubmed/22977088.

Fonseca, P., I. Vardaki, et al. (2016). "Metabolic and Signaling Functions of Cancer Cell-Derived Extracellular Vesicles." Int Rev Cell Mol Biol 326: 175-199. http://www.ncbi.nlm.nih.gov/pubmed/27572129.

Fulsundar, S., K. Harms, et al. (2014). "Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation." Appl Environ Microbiol 80(11): 3469-3483. http://www.ncbi.nlm.nih.gov/pubmed/24657872.

Gaudin, M., E. Gauliard, et al. (2013). "Hyperthermophilic archaea produce membrane vesicles that can transfer DNA." Environ Microbiol Rep 5(1): 109-116. http://www.ncbi.nlm.nih.gov/pubmed/23757139.

Gaudin, M., M. Krupovic, et al. (2014). "Extracellular membrane vesicles harbouring viral genomes." Environ Microbiol 16(4): 1167-1175. http://www.ncbi.nlm.nih.gov/pubmed/24034793.

Grande, R., M. C. Di Marcantonio, et al. (2015). "Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA)." Front Microbiol 6: 1369. http://www.ncbi.nlm.nih.gov/pubmed/26733944.

He, W. A., F. Calore, et al. (2014). "Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7." Proc Natl Acad Sci U S A 111(12): 4525-4529. http://www.ncbi.nlm.nih.gov/pubmed/24616506.

Ibrahim, A. and E. Marban (2016). "Exosomes: Fundamental Biology and Roles in Cardiovascular Physiology." Annu Rev Physiol 78: 67-83. http://www.ncbi.nlm.nih.gov/pubmed/26667071.

Ionescu, M., P. A. Zaini, et al. (2014). "Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces." Proc Natl Acad Sci U S A 111(37): E3910-3918. http://www.ncbi.nlm.nih.gov/pubmed/25197068.

Jin, J. S., S. O. Kwon, et al. (2011). "Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles." PLoS One 6(2): e17027. http://www.ncbi.nlm.nih.gov/pubmed/21386968.

Kang, Y., E. Goo, et al. (2017). "Critical role of quorum sensing-dependent glutamate metabolism in homeostatic osmolality and outer membrane vesiculation in Burkholderia glumae." Sci Rep 7: 44195. http://www.ncbi.nlm.nih.gov/pubmed/28272446.

Kawamura, Y., Y. Yamamoto, et al. (2017). "Extracellular vesicles as trans-genomic agents: emerging roles in disease and evolution." Cancer Sci. http://www.ncbi.nlm.nih.gov/pubmed/28256033.

Kulp, A. and M. J. Kuehn (2010). "Biological functions and biogenesis of secreted bacterial outer membrane vesicles." Annu Rev Microbiol 64: 163-184. http://www.ncbi.nlm.nih.gov/pubmed/20825345.

Liao, S., M. I. Klein, et al. (2014). "Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery." J Bacteriol 196(13): 2355-2366. http://www.ncbi.nlm.nih.gov/pubmed/24748612.

Lin, J., W. Zhang, et al. (2017). "A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition." Nat Commun 8: 14888. http://www.ncbi.nlm.nih.gov/pubmed/28348410.

Lotvall, J. and H. Valadi (2007). "Cell to cell signalling via exosomes through esRNA." Cell Adh Migr 1(3): 156-158. http://www.ncbi.nlm.nih.gov/pubmed/19262134.

Ludwig, A. K. and B. Giebel (2012). "Exosomes: small vesicles participating in intercellular communication." Int J Biochem Cell Biol 44(1): 11-15. http://www.ncbi.nlm.nih.gov/pubmed/22024155.

Macdonald, I. A. and M. J. Kuehn (2013). "Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa." J Bacteriol 195(13): 2971-2981. http://www.ncbi.nlm.nih.gov/pubmed/23625841.

Manning, A. J. and M. J. Kuehn (2011). "Contribution of bacterial outer membrane vesicles to innate bacterial defense." BMC Microbiol 11: 258. http://www.ncbi.nlm.nih.gov/pubmed/22133164.

McMahon, K. J., M. E. Castelli, et al. (2012). "Biogenesis of outer membrane vesicles in Serratia marcescens is thermoregulated and can be induced by activation of the Rcs phosphorelay system." J Bacteriol 194(12): 3241-3249. http://www.ncbi.nlm.nih.gov/pubmed/22493021.

Melo, S. A., H. Sugimoto, et al. (2014). "Cancer Exosomes Perform Cell-Independent MicroRNA Biogenesis and Promote Tumorigenesis." Cancer cell 26(5): 707-721. http://www.ncbi.nlm.nih.gov/pubmed/25446899.

Metcalf, W. W., J. K. Zhang, et al. (1997). "A genetic system for Archaea of the genus Methanosarcina: liposome-mediated transformation and construction of shuttle vectors." Proc Natl Acad Sci U S A 94(6): 2626-2631. http://www.ncbi.nlm.nih.gov/pubmed/9122246.

Mu, W., S. Rana, et al. (2013). "Host matrix modulation by tumor exosomes promotes motility and invasiveness." Neoplasia 15(8): 875-887. http://www.ncbi.nlm.nih.gov/pubmed/23908589.

Ogorevc, E., V. Kralj-Iglic, et al. (2013). "The role of extracellular vesicles in phenotypic cancer transformation." Radiol Oncol 47(3): 197-205. http://www.ncbi.nlm.nih.gov/pubmed/24133383.

Pegtel, D. M., L. Peferoen, et al. (2014). "Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain." Philos Trans R Soc Lond B Biol Sci 369(1652). http://www.ncbi.nlm.nih.gov/pubmed/25135977.

Pittoggi, C., R. Beraldi, et al. (2006). "Generation of biologically active retro-genes upon interaction of mouse spermatozoa with exogenous DNA." Mol Reprod Dev 73(10): 1239-1246. http://www.ncbi.nlm.nih.gov/pubmed/16850445.

Quesenberry, P. J., J. Aliotta, et al. (2015). "Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming." Stem Cell Res Ther 6: 153. http://www.ncbi.nlm.nih.gov/pubmed/26334526.

Ratajczak, M. Z. and J. Ratajczak (2016). "Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later." Clin Transl Med 5(1): 7. http://www.ncbi.nlm.nih.gov/pubmed/26943717.

Resch, U., J. A. Tsatsaronis, et al. (2016). "A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus." MBio 7(6). http://www.ncbi.nlm.nih.gov/pubmed/27803183.

Reyes-Robles, T., R. S. Dillard, et al. (2018). "Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection." J Bacteriol. http://www.ncbi.nlm.nih.gov/pubmed/29661863.

Ridder, K., S. Keller, et al. (2014). "Extracellular Vesicle-Mediated Transfer of Genetic Information between the Hematopoietic System and the Brain in Response to Inflammation." PLoS Biol 12(6): e1001874. http://www.ncbi.nlm.nih.gov/pubmed/24893313.

Schwechheimer, C., C. J. Sullivan, et al. (2013). "Envelope Control of Outer Membrane Vesicle Production in Gram-negative Bacteria." Biochemistry. http://www.ncbi.nlm.nih.gov/pubmed/23521754.

Shenoda, B. B. and S. K. Ajit (2016). "Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells." Clin Med Insights Pathol 9(Suppl 1): 1-8. http://www.ncbi.nlm.nih.gov/pubmed/27660518.

Shibata, S. and K. L. Visick (2012). "Sensor kinase RscS induces the production of antigenically distinct outer membrane vesicles that depend on the symbiosis polysaccharide locus in Vibrio fischeri." J Bacteriol 194(1): 185-194. http://www.ncbi.nlm.nih.gov/pubmed/22020639.

Sidik, S., H. Kottwitz, et al. (2014). "A Shigella flexneri virulence plasmid encoded factor controls production of outer membrane vesicles." G3 (Bethesda) 4(12): 2493-2503. http://www.ncbi.nlm.nih.gov/pubmed/25378474.

Smith, K. and C. Spadafora (2005). "Sperm-mediated gene transfer: applications and implications." Bioessays 27(5): 551-562. http://www.ncbi.nlm.nih.gov/pubmed/15832378.

Soler, N., M. Krupovic, et al. (2015). "Membrane vesicles in natural environments: a major challenge in viral ecology." ISME J 9(4): 793-796. http://www.ncbi.nlm.nih.gov/pubmed/25314322.

Song, T., D. Sabharwal, et al. (2014). "Vibrio cholerae utilizes direct sRNA regulation in expression of a biofilm matrix protein." PLoS One 9(7): e101280. http://www.ncbi.nlm.nih.gov/pubmed/25054332.

Spadafora, C. (2007). "Sperm-mediated gene transfer: mechanisms and implications." Soc Reprod Fertil Suppl 65: 459-467. http://www.ncbi.nlm.nih.gov/pubmed/17644984.

Spadafora, C. (2015). "A LINE-1-encoded reverse transcriptase-dependent regulatory mechanism is active in embryogenesis and tumorigenesis." Ann N Y Acad Sci. http://www.ncbi.nlm.nih.gov/pubmed/25586649.

Urbanelli, L., S. Buratta, et al. (2016). "Extracellular Vesicles as New Players in Cellular Senescence." Int J Mol Sci 17(9). http://www.ncbi.nlm.nih.gov/pubmed/27571072.

Urbanelli, L., A. Magini, et al. (2013). "Signaling pathways in exosomes biogenesis, secretion and fate." Genes (Basel) 4(2): 152-170. http://www.ncbi.nlm.nih.gov/pubmed/24705158.

Valadi, H., K. Ekstrom, et al. (2007). "Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells." Nat Cell Biol 9(6): 654-659. http://www.ncbi.nlm.nih.gov/pubmed/17486113.

van Dongen, H. M., N. Masoumi, et al. (2016). "Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery." Microbiol Mol Biol Rev 80(2): 369-386. http://www.ncbi.nlm.nih.gov/pubmed/26935137.

Yanez-Mo, M., P. R. Siljander, et al. (2015). "Biological properties of extracellular vesicles and their physiological functions." J Extracell Vesicles 4: 27066. http://www.ncbi.nlm.nih.gov/pubmed/25979354.

Yaron, S., G. L. Kolling, et al. (2000). "Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria." Appl Environ Microbiol 66(10): 4414-4420. http://www.ncbi.nlm.nih.gov/pubmed/11010892.

Zaborowski, M. P., L. Balaj, et al. (2015). "Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study." Bioscience 65(8): 783-797. http://www.ncbi.nlm.nih.gov/pubmed/26955082.

Zhang, G. and P. Yang (2017). "A novel cell-cell communication mechanism in the nervous system: exosomes." J Neurosci Res. http://www.ncbi.nlm.nih.gov/pubmed/28718905.

Zhang, W., X. Jiang, et al. (2018). "Exosomes in Pathogen Infections: A Bridge to Deliver Molecules and Link Functions." Front Immunol 9: 90. http://www.ncbi.nlm.nih.gov/pubmed/29483904.

Zhao, Y., M. Yu, et al. (2012). "Spontaneous uptake of exogenous DNA by goat spermatozoa and selection of donor bucks for sperm-mediated gene transfer." Mol Biol Rep 39(3): 2659-2664. http://www.ncbi.nlm.nih.gov/pubmed/21667250.

Zhu, Y., S. G. Dashper, et al. (2013). "Porphyromonas gingivalis and Treponema denticola synergistic polymicrobial biofilm development." PLoS One 8(8): e71727. http://www.ncbi.nlm.nih.gov/pubmed/23990979.