No Genome is an Island Extra References 10

 

10. Importance of Ecological Transitions in Triggering Genome Change.

 

·      10.C. Microbial infection and genotoxin activity.

 

o   Toxin molecule enters the host cell nucleus by mechanisms based on specific membrane interactions and nuclear localization signals (NLSs) (Boesze-Battaglia, Alexander et al. 2016; Frisan 2016; Boesze-Battaglia, Walker et al. 2017).

 

o   Bacterial outer membrane EVs transport CDT genotoxin (and potentially other genotoxins): the intestinal bacteria Escherichia coli (Bielaszewska, Ruter et al. 2017) and Campylobacter jejuni (Lindmark, Rompikuntal et al. 2009; Elmi, Watson et al. 2012) as well as Aggregatibacter actinomycetemcomitans, which is known to infect the oral cavity (Rompikuntal, Thay et al. 2012).

 

·      10.D. The complex nature of genome instabilities in cancer cells.

 

o   Chromosome changes in cancer (Albertson, Collins et al. 2003; Mertens, Johansson et al. 2015; Seki, Mizukami et al. 2015; Ye, Wang et al. 2015; Markowetz 2016; Menghi, Inaki et al. 2016; Steele 2016; Chen, Singh et al. 2017; Kumar, Dillon et al. 2017; Rangel, Forero-Castro et al. 2017; Vargas-Rondon, Villegas et al. 2017; Bloomfield and Duesberg 2018; Grobner, Worst et al. 2018; Nattestad, Goodwin et al. 2018; Viswanathan, Ha et al. 2018; Yi and Ju 2018)

 

o   Chromothripsis (Kloosterman, Hoogstraat et al. 2011; Magrangeas, Avet-Loiseau et al. 2011; Chen, Ferec et al. 2012; Forment, Kaidi et al. 2012; Jones and Jallepalli 2012; Kloosterman, Tavakoli-Yaraki et al. 2012; Molenaar, Koster et al. 2012; Bassaganyas, Bea et al. 2013; Boeva, Jouannet et al. 2013; Kloosterman and Cuppen 2013; Korbel and Campbell 2013; Zhang, Leibowitz et al. 2013; Cai, Kumar et al. 2014; Kloosterman, Koster et al. 2014; McEvoy, Nagahawatte et al. 2014; Pellestor, Gatinois et al. 2014; Pellestor, Gatinois et al. 2014; de Pagter and Kloosterman 2015; de Pagter, van Roosmalen et al. 2015; Furgason, Koncar et al. 2015; Leibowitz, Zhang et al. 2015; Maciejowski, Li et al. 2015; Terzoudi, Karakosta et al. 2015; Weckselblatt, Hermetz et al. 2015; Zhang, Spektor et al. 2015; Hatch 2016; Nazaryan-Petersen, Bertelsen et al. 2016; Poot 2016; Rode, Maass et al. 2016; Storchova and Kloosterman 2016; Collins, Brand et al. 2017; Ly and Cleveland 2017; Middelkamp, van Heesch et al. 2017; Poot 2017)

 

o   Chromoplexy. 88% of prostate tumors displayed inter-chromosomal rearrangement chains of 10 or more breakpoints, 63% contained two or more chains, and 39% of all prostate cancer chromosome rearrangements came from chromoplectic chains. (Baca, Prandi et al. 2013)

 

o   Kataegis. Predominantly C-to-T transitions, as expected for C-to-U deamination products, and are largely fixed on the same DNA strand, a sign of catalytic processivity. (Chan and Gordenin 2015; Chan, Roberts et al. 2015; Kazanov, Roberts et al. 2015; Rebhandl, Huemer et al. 2015; Shlien, Campbell et al. 2015; Swanton, McGranahan et al. 2015; Casellas, Basu et al. 2016)

 

o   Cell fusions. (Lu and Kang 2009) (Platt, Zhou et al. 2016) ((Rachkovsky, Sodi et al. 1998) (Lu and Kang 2007) (Pawelek and Chakraborty 2008) (Pawelek and Chakraborty 2008) (Pawelek 2014) (Choi 2009) (Lu and Kang 2009) (Lu and Kang 2009) (Gast, Silk et al. 2018) (Rappa, Mercapide et al. 2012) (LaBerge, Duvall et al. 2017) (Chitty, Filipe et al. 2018) )

 

§  entosis (autophagy) (Overholtzer, Mailleux et al. 2007),

§  DNA exchange (Searles, Santosa et al. 2018),

§  virus-linked fusion (Parris 2005) (Duelli and Lazebnik 2007) (Gao and Zheng 2011),

§  role of Syncytin 1 (Duelli and Lazebnik 2003),

§  MAPK signalling (Dudin, Merlini et al. 2016),

§  tumor evolution (Zhou, Merchak et al. 2015),

§  linked to inflammation (Johansson, Youssef et al. 2008),

§  radiation-induced (Nygren, Liuba et al. 2008),

§  polyploid/WGD/aneuploid oncogenesis (Fujiwara, Bandi et al. 2005) (Fujiwara, Bandi et al. 2005) (Margolis 2005) (Lim and Ganem 2014)

 

·      Mutational events observed in real-time tumor evolution also found in the germlines of healthy individuals (Goodman 2016) (Abrusan, Szilagyi et al. 2013; Pellestor, Gatinois et al. 2014; Weckselblatt, Hermetz et al. 2015; Fukami, Shima et al. 2017; Middelkamp, van Heesch et al. 2017; Poot 2017)

 

 

REFERENCES

 

Abrusan, G., A. Szilagyi, et al. (2013). "Turning gold into 'junk': transposable elements utilize central proteins of cellular networks." Nucleic Acids Res 41(5): 3190-3200. http://www.ncbi.nlm.nih.gov/pubmed/23341038.

Albertson, D. G., C. Collins, et al. (2003). "Chromosome aberrations in solid tumors." Nat Genet 34(4): 369-376. http://www.ncbi.nlm.nih.gov/pubmed/12923544.

Baca, S. C., D. Prandi, et al. (2013). "Punctuated evolution of prostate cancer genomes." Cell 153(3): 666-677. http://www.ncbi.nlm.nih.gov/pubmed/23622249.

Bassaganyas, L., S. Bea, et al. (2013). "Sporadic and reversible chromothripsis in chronic lymphocytic leukemia revealed by longitudinal genomic analysis." Leukemia 27(12): 2376-2379. http://www.ncbi.nlm.nih.gov/pubmed/23612016.

Bielaszewska, M., C. Ruter, et al. (2017). "Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury." PLoS Pathog 13(2): e1006159. http://www.ncbi.nlm.nih.gov/pubmed/28158302.

Bloomfield, M. and P. Duesberg (2018). "Is cancer progression caused by gradual or simultaneous acquisitions of new chromosomes?" Mol Cytogenet 11: 4. http://www.ncbi.nlm.nih.gov/pubmed/29371887.

Boesze-Battaglia, K., D. Alexander, et al. (2016). "A Journey of Cytolethal Distending Toxins through Cell Membranes." Front Cell Infect Microbiol 6: 81. http://www.ncbi.nlm.nih.gov/pubmed/27559534.

Boesze-Battaglia, K., L. P. Walker, et al. (2017). "Internalization of the Active Subunit of the Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin Is Dependent upon Cellugyrin (Synaptogyrin 2), a Host Cell Non-Neuronal Paralog of the Synaptic Vesicle Protein, Synaptogyrin 1." Front Cell Infect Microbiol 7: 469. http://www.ncbi.nlm.nih.gov/pubmed/29184850.

Boeva, V., S. Jouannet, et al. (2013). "Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis." PLoS One 8(8): e72182. http://www.ncbi.nlm.nih.gov/pubmed/23991058.

Cai, H., N. Kumar, et al. (2014). "Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens." BMC Genomics 15: 82. http://www.ncbi.nlm.nih.gov/pubmed/24476156.

Casellas, R., U. Basu, et al. (2016). "Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity." Nat Rev Immunol 16(3): 164-176. http://www.ncbi.nlm.nih.gov/pubmed/26898111.

Chan, K. and D. A. Gordenin (2015). "Clusters of Multiple Mutations: Incidence and Molecular Mechanisms." Annu Rev Genet 49: 243-267. http://www.ncbi.nlm.nih.gov/pubmed/26631512.

Chan, K., S. A. Roberts, et al. (2015). "An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers." Nat Genet 47(9): 1067-1072. http://www.ncbi.nlm.nih.gov/pubmed/26258849.

Chen, H., R. R. Singh, et al. (2017). "Genome-wide copy number aberrations and HER2 and FGFR1 alterations in primary breast cancer by molecular inversion probe microarray." Oncotarget 8(7): 10845-10857. http://www.ncbi.nlm.nih.gov/pubmed/28125801.

Chen, J. M., C. Ferec, et al. (2012). "Transient hypermutability, chromothripsis and replication-based mechanisms in the generation of concurrent clustered mutations." Mutat Res 750(1): 52-59. http://www.ncbi.nlm.nih.gov/pubmed/22100908.

Chitty, J. L., E. C. Filipe, et al. (2018). "Recent advances in understanding the complexities of metastasis." F1000Res 7. http://www.ncbi.nlm.nih.gov/pubmed/30135716.

Choi, C. Q. (2009). "A theory of a deadly fusion." Sci Am 300(1): 100-101, 103. http://www.ncbi.nlm.nih.gov/pubmed/19186757.

Collins, R. L., H. Brand, et al. (2017). "Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome." Genome Biol 18(1): 36. http://www.ncbi.nlm.nih.gov/pubmed/28260531.

de Pagter, M. S. and W. P. Kloosterman (2015). "The Diverse Effects of Complex Chromosome Rearrangements and Chromothripsis in Cancer Development." Recent Results Cancer Res 200: 165-193. http://www.ncbi.nlm.nih.gov/pubmed/26376877.

de Pagter, M. S., M. J. van Roosmalen, et al. (2015). "Chromothripsis in Healthy Individuals Affects Multiple Protein-Coding Genes and Can Result in Severe Congenital Abnormalities in Offspring." Am J Hum Genet. http://www.ncbi.nlm.nih.gov/pubmed/25799107.

Dudin, O., L. Merlini, et al. (2016). "Spatial focalization of pheromone/MAPK signaling triggers commitment to cell-cell fusion." Genes Dev 30(19): 2226-2239. http://www.ncbi.nlm.nih.gov/pubmed/27798845.

Duelli, D. and Y. Lazebnik (2003). "Cell fusion: a hidden enemy?" Cancer Cell 3(5): 445-448. http://www.ncbi.nlm.nih.gov/pubmed/12781362.

Duelli, D. and Y. Lazebnik (2007). "Cell-to-cell fusion as a link between viruses and cancer." Nat Rev Cancer 7(12): 968-976. http://www.ncbi.nlm.nih.gov/pubmed/18034186.

Elmi, A., E. Watson, et al. (2012). "Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells." Infect Immun 80(12): 4089-4098. http://www.ncbi.nlm.nih.gov/pubmed/22966047.

Forment, J. V., A. Kaidi, et al. (2012). "Chromothripsis and cancer: causes and consequences of chromosome shattering." Nat Rev Cancer 12(10): 663-670. http://www.ncbi.nlm.nih.gov/pubmed/22972457.

Frisan, T. (2016). "Bacterial genotoxins: The long journey to the nucleus of mammalian cells." Biochim Biophys Acta 1858(3): 567-575. http://www.ncbi.nlm.nih.gov/pubmed/26299818.

Fujiwara, T., M. Bandi, et al. (2005). "Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells." Nature 437(7061): 1043-1047. http://www.ncbi.nlm.nih.gov/pubmed/16222300.

Fukami, M., H. Shima, et al. (2017). "Catastrophic cellular events leading to complex chromosomal rearrangements in the germline." Clin Genet 91(5): 653-660. http://www.ncbi.nlm.nih.gov/pubmed/27888607.

Furgason, J. M., R. F. Koncar, et al. (2015). "Whole genome sequence analysis links chromothripsis to EGFR, MDM2, MDM4, and CDK4 amplification in glioblastoma." Oncoscience 2(7): 618-628. http://www.ncbi.nlm.nih.gov/pubmed/26328271.

Gao, P. and J. Zheng (2011). "Oncogenic virus-mediated cell fusion: new insights into initiation and progression of oncogenic viruses--related cancers." Cancer Lett 303(1): 1-8. http://www.ncbi.nlm.nih.gov/pubmed/21306823.

Gast, C. E., A. D. Silk, et al. (2018). "Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival." Sci Adv 4(9): eaat7828. http://www.ncbi.nlm.nih.gov/pubmed/30214939.

Goodman, M. F. (2016). "Better living with hyper-mutation." Environ Mol Mutagen 57(6): 421-434. http://www.ncbi.nlm.nih.gov/pubmed/27273795.

Grobner, S. N., B. C. Worst, et al. (2018). "The landscape of genomic alterations across childhood cancers." Nature 555(7696): 321-327. http://www.ncbi.nlm.nih.gov/pubmed/29489754.

Hatch, E. M. (2016). "Y chromothripsis?" Nat Cell Biol 19(1): 12-14. http://www.ncbi.nlm.nih.gov/pubmed/28008180.

Johansson, C. B., S. Youssef, et al. (2008). "Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation." Nat Cell Biol 10(5): 575-583. http://www.ncbi.nlm.nih.gov/pubmed/18425116.

Jones, M. J. and P. V. Jallepalli (2012). "Chromothripsis: chromosomes in crisis." Dev Cell 23(5): 908-917. http://www.ncbi.nlm.nih.gov/pubmed/23153487.

Kazanov, M. D., S. A. Roberts, et al. (2015). "APOBEC-Induced Cancer Mutations Are Uniquely Enriched in Early-Replicating, Gene-Dense, and Active Chromatin Regions." Cell Rep 13(6): 1103-1109. http://www.ncbi.nlm.nih.gov/pubmed/26527001.

Kloosterman, W. P. and E. Cuppen (2013). "Chromothripsis in congenital disorders and cancer: similarities and differences." Curr Opin Cell Biol 25(3): 341-348. http://www.ncbi.nlm.nih.gov/pubmed/23478216.

Kloosterman, W. P., M. Hoogstraat, et al. (2011). "Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer." Genome Biol 12(10): R103. http://www.ncbi.nlm.nih.gov/pubmed/22014273.

Kloosterman, W. P., J. Koster, et al. (2014). "Prevalence and clinical implications of chromothripsis in cancer genomes." Curr Opin Oncol 26(1): 64-72. http://www.ncbi.nlm.nih.gov/pubmed/24305569.

Kloosterman, W. P., M. Tavakoli-Yaraki, et al. (2012). "Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms." Cell Rep 1(6): 648-655. http://www.ncbi.nlm.nih.gov/pubmed/22813740.

Korbel, J. O. and P. J. Campbell (2013). "Criteria for inference of chromothripsis in cancer genomes." Cell 152(6): 1226-1236. http://www.ncbi.nlm.nih.gov/pubmed/23498933.

Kumar, P., L. W. Dillon, et al. (2017). "Normal and Cancerous Tissues Release Extrachromosomal Circular DNA (eccDNA) into the Circulation." Mol Cancer Res. http://www.ncbi.nlm.nih.gov/pubmed/28550083.

LaBerge, G. S., E. Duvall, et al. (2017). "A Melanoma Lymph Node Metastasis with a Donor-Patient Hybrid Genome following Bone Marrow Transplantation: A Second Case of Leucocyte-Tumor Cell Hybridization in Cancer Metastasis." PLoS One 12(2): e0168581. http://www.ncbi.nlm.nih.gov/pubmed/28146572.

Leibowitz, M. L., C. Z. Zhang, et al. (2015). "Chromothripsis: A New Mechanism for Rapid Karyotype Evolution." Annu Rev Genet 49: 183-211. http://www.ncbi.nlm.nih.gov/pubmed/26442848.

Lim, S. and N. J. Ganem (2014). "Tetraploidy and tumor development." Oncotarget 5(22): 10959-10960. http://www.ncbi.nlm.nih.gov/pubmed/25526024.

Lindmark, B., P. K. Rompikuntal, et al. (2009). "Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni." BMC Microbiol 9: 220. http://www.ncbi.nlm.nih.gov/pubmed/19835618.

Lu, X. and Y. Kang (2007). "Organotropism of breast cancer metastasis." J Mammary Gland Biol Neoplasia 12(2-3): 153-162. http://www.ncbi.nlm.nih.gov/pubmed/17566854.

Lu, X. and Y. Kang (2009). "Cell fusion as a hidden force in tumor progression." Cancer Res 69(22): 8536-8539. http://www.ncbi.nlm.nih.gov/pubmed/19887616.

Lu, X. and Y. Kang (2009). "Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants." Proc Natl Acad Sci U S A 106(23): 9385-9390. http://www.ncbi.nlm.nih.gov/pubmed/19458257.

Ly, P. and D. W. Cleveland (2017). "Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis." Trends Cell Biol 27(12): 917-930. http://www.ncbi.nlm.nih.gov/pubmed/28899600.

Maciejowski, J., Y. Li, et al. (2015). "Chromothripsis and Kataegis Induced by Telomere Crisis." Cell 163(7): 1641-1654. http://www.ncbi.nlm.nih.gov/pubmed/26687355.

Magrangeas, F., H. Avet-Loiseau, et al. (2011). "Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients." Blood 118(3): 675-678. http://www.ncbi.nlm.nih.gov/pubmed/21628407.

Margolis, R. L. (2005). "Tetraploidy and tumor development." Cancer Cell 8(5): 353-354. http://www.ncbi.nlm.nih.gov/pubmed/16286243.

Markowetz, F. (2016). "A saltationist theory of cancer evolution." Nat Genet 48(10): 1102-1103. http://www.ncbi.nlm.nih.gov/pubmed/27681287.

McEvoy, J., P. Nagahawatte, et al. (2014). "RB1 gene inactivation by chromothripsis in human retinoblastoma." Oncotarget 5(2): 438-450. http://www.ncbi.nlm.nih.gov/pubmed/24509483.

Menghi, F., K. Inaki, et al. (2016). "The tandem duplicator phenotype as a distinct genomic configuration in cancer." Proc Natl Acad Sci U S A 113(17): E2373-2382. http://www.ncbi.nlm.nih.gov/pubmed/27071093.

Mertens, F., B. Johansson, et al. (2015). "The emerging complexity of gene fusions in cancer." Nat Rev Cancer 15(6): 371-381. http://www.ncbi.nlm.nih.gov/pubmed/25998716.

Middelkamp, S., S. van Heesch, et al. (2017). "Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells." Genome Med 9(1): 9. http://www.ncbi.nlm.nih.gov/pubmed/28126037.

Molenaar, J. J., J. Koster, et al. (2012). "Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes." Nature 483(7391): 589-593. http://www.ncbi.nlm.nih.gov/pubmed/22367537.

Nattestad, M., S. Goodwin, et al. (2018). "Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line." Genome Res 28(8): 1126-1135. http://www.ncbi.nlm.nih.gov/pubmed/29954844.

Nazaryan-Petersen, L., B. Bertelsen, et al. (2016). "Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination." Hum Mutat 37(4): 385-395. http://www.ncbi.nlm.nih.gov/pubmed/26929209.

Nygren, J. M., K. Liuba, et al. (2008). "Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion." Nat Cell Biol 10(5): 584-592. http://www.ncbi.nlm.nih.gov/pubmed/18425115.

Overholtzer, M., A. A. Mailleux, et al. (2007). "A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion." Cell 131(5): 966-979. http://www.ncbi.nlm.nih.gov/pubmed/18045538.

Parris, G. E. (2005). "The role of viruses in cell fusion and its importance to evolution, invasion and metastasis of cancer clones." Med Hypotheses 64(5): 1011-1014. http://www.ncbi.nlm.nih.gov/pubmed/15780502.

Pawelek, J. M. (2014). "Fusion of bone marrow-derived cells with cancer cells: metastasis as a secondary disease in cancer." Chin J Cancer 33(3): 133-139. http://www.ncbi.nlm.nih.gov/pubmed/24589183.

Pawelek, J. M. and A. K. Chakraborty (2008). "The cancer cell--leukocyte fusion theory of metastasis." Adv Cancer Res 101: 397-444. http://www.ncbi.nlm.nih.gov/pubmed/19055949.

Pawelek, J. M. and A. K. Chakraborty (2008). "Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis." Nat Rev Cancer 8(5): 377-386. http://www.ncbi.nlm.nih.gov/pubmed/18385683.

Pellestor, F., V. Gatinois, et al. (2014). "[Chromothripsis, an unexpected novel form of complexity for chromosomal rearrangements]." Med Sci (Paris) 30(3): 266-273. http://www.ncbi.nlm.nih.gov/pubmed/24685217.

Pellestor, F., V. Gatinois, et al. (2014). "Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review." Fertil Steril 102(6): 1785-1796. http://www.ncbi.nlm.nih.gov/pubmed/25439810.

Platt, J. L., X. Zhou, et al. (2016). "Cell Fusion in the War on Cancer: A Perspective on the Inception of Malignancy." Int J Mol Sci 17(7). http://www.ncbi.nlm.nih.gov/pubmed/27420051.

Poot, M. (2016). "Chromothripsis after Stumbling through DNA Replication." Mol Syndromol 6(5): 207-209. http://www.ncbi.nlm.nih.gov/pubmed/26997940.

Poot, M. (2017). "Of Simple and Complex Genome Rearrangements, Chromothripsis, Chromoanasynthesis, and Chromosome Chaos." Mol Syndromol 8(3): 115-117. http://www.ncbi.nlm.nih.gov/pubmed/28588432.

Rachkovsky, M., S. Sodi, et al. (1998). "Melanoma x macrophage hybrids with enhanced metastatic potential." Clin Exp Metastasis 16(4): 299-312. http://www.ncbi.nlm.nih.gov/pubmed/9626809.

Rangel, N., M. Forero-Castro, et al. (2017). "New Insights in the Cytogenetic Practice: Karyotypic Chaos, Non-Clonal Chromosomal Alterations and Chromosomal Instability in Human Cancer and Therapy Response." Genes (Basel) 8(6). http://www.ncbi.nlm.nih.gov/pubmed/28587191.

Rappa, G., J. Mercapide, et al. (2012). "Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity." Am J Pathol 180(6): 2504-2515. http://www.ncbi.nlm.nih.gov/pubmed/22542847.

Rebhandl, S., M. Huemer, et al. (2015). "AID/APOBEC deaminases and cancer." Oncoscience 2(4): 320-333. http://www.ncbi.nlm.nih.gov/pubmed/26097867.

Rode, A., K. K. Maass, et al. (2016). "Chromothripsis in cancer cells: An update." Int J Cancer 138(10): 2322-2333. http://www.ncbi.nlm.nih.gov/pubmed/26455580.

Rompikuntal, P. K., B. Thay, et al. (2012). "Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans." Infect Immun 80(1): 31-42. http://www.ncbi.nlm.nih.gov/pubmed/22025516.

Searles, S. C., E. K. Santosa, et al. (2018). "Cell-cell fusion as a mechanism of DNA exchange in cancer." Oncotarget 9(5): 6156-6173. http://www.ncbi.nlm.nih.gov/pubmed/29464062.

Seki, Y., T. Mizukami, et al. (2015). "Molecular Process Producing Oncogene Fusion in Lung Cancer Cells by Illegitimate Repair of DNA Double-Strand Breaks." Biomolecules 5(4): 2464-2476. http://www.ncbi.nlm.nih.gov/pubmed/26437441.

Shlien, A., B. B. Campbell, et al. (2015). "Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers." Nat Genet. http://www.ncbi.nlm.nih.gov/pubmed/25642631.

Steele, E. J. (2016). "Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures." DNA Repair (Amst) 45: 1-24. http://www.ncbi.nlm.nih.gov/pubmed/27449479.

Storchova, Z. and W. P. Kloosterman (2016). "The genomic characteristics and cellular origin of chromothripsis." Curr Opin Cell Biol 40: 106-113. http://www.ncbi.nlm.nih.gov/pubmed/27023493.

Swanton, C., N. McGranahan, et al. (2015). "APOBEC Enzymes: Mutagenic Fuel for Cancer Evolution and Heterogeneity." Cancer Discov 5(7): 704-712. http://www.ncbi.nlm.nih.gov/pubmed/26091828.

Terzoudi, G. I., M. Karakosta, et al. (2015). "Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis." Mutat Res Genet Toxicol Environ Mutagen 793: 185-198. http://www.ncbi.nlm.nih.gov/pubmed/26520389.

Vargas-Rondon, N., V. E. Villegas, et al. (2017). "The Role of Chromosomal Instability in Cancer and Therapeutic Responses." Cancers (Basel) 10(1). http://www.ncbi.nlm.nih.gov/pubmed/29283387.

Viswanathan, S. R., G. Ha, et al. (2018). "Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing." Cell. http://www.ncbi.nlm.nih.gov/pubmed/29909985.

Weckselblatt, B., K. E. Hermetz, et al. (2015). "Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis." Genome Res 25(7): 937-947. http://www.ncbi.nlm.nih.gov/pubmed/26070663.

Ye, K., J. Wang, et al. (2015). "Systematic discovery of complex insertions and deletions in human cancers." Nat Med. http://www.ncbi.nlm.nih.gov/pubmed/26657142.

Yi, K. and Y. S. Ju (2018). "Patterns and mechanisms of structural variations in human cancer." Exp Mol Med 50(8): 98. http://www.ncbi.nlm.nih.gov/pubmed/30089796.

Zhang, C. Z., M. L. Leibowitz, et al. (2013). "Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements." Genes Dev 27(23): 2513-2530. http://www.ncbi.nlm.nih.gov/pubmed/24298051.

Zhang, C. Z., A. Spektor, et al. (2015). "Chromothripsis from DNA damage in micronuclei." Nature 522(7555): 179-184. http://www.ncbi.nlm.nih.gov/pubmed/26017310.

Zhou, X., K. Merchak, et al. (2015). "Cell Fusion Connects Oncogenesis with Tumor Evolution." Am J Pathol 185(7): 2049-2060. http://www.ncbi.nlm.nih.gov/pubmed/26066710.