REFERENCES
Albertin, W., K.
Alix, et al. (2007). "Differential regulation of gene products
in newly
synthesized Brassica napus allotetraploids is not related to
protein function
nor subcellular localization." BMC Genomics 8: 56. https://pubmed.ncbi.nlm.nih.gov/17313678/
Alix, K., P. R.
Gerard, et al. (2017). "Polyploidy and interspecific
hybridization:
partners for adaptation, speciation and evolution in plants."
Ann Bot
120(2): 183-194. https://pubmed.ncbi.nlm.nih.gov/28854567/
Arkhipova, I. R. and
F. Rodriguez (2013). "Genetic and epigenetic changes involving
(retro)transposons in animal hybrids and polyploids." Cytogenet
Genome
Res 140(2-4):
295-311. https://pubmed.ncbi.nlm.nih.gov/23899811/
Baack, E. J., K. D.
Whitney, et al. (2005). "Hybridization and genome size
evolution: timing
and magnitude of nuclear DNA content increases in Helianthus
homoploid hybrid
species." New Phytol 167(2):
623-630. https://pubmed.ncbi.nlm.nih.gov/15998412/
Baicharoen, S., T.
Miyabe-Nishiwaki, et al. (2014). "Locational diversity of
alpha satellite
DNA and intergeneric hybridization aspects in the Nomascus and
Hylobates genera
of small apes." PLoS One 9(10):
e109151. https://pubmed.ncbi.nlm.nih.gov/25290445/
Bamberger, C., S.
Martínez-Bartolomé, et al. (2018). "Increased proteomic
complexity in
Drosophila hybrids during development." Sci Adv 4(2): eaao3424. https://pubmed.ncbi.nlm.nih.gov/29441361/
Bento, M., D. Tomas,
et al. (2013). "Retrotransposons represent the most labile
fraction for
genomic rearrangements in polyploid plant species." Cytogenet
Genome
Res 140(2-4):
286-294. https://pubmed.ncbi.nlm.nih.gov/23899810/
Brieuc, M. S., C. D.
Waters, et al. (2014). "A dense linkage map for Chinook salmon
(Oncorhynchus tshawytscha) reveals variable chromosomal
divergence after an
ancestral whole genome duplication event." G3 (Bethesda)
4(3): 447-460. https://pubmed.ncbi.nlm.nih.gov/24381192/
Brown, J. D., D.
Golden, et al. (2008). "Methylation perturbations in
retroelements within
the genome of a Mus interspecific hybrid correlate with double
minute
chromosome formation." Genomics 91(3): 267-273. https://pubmed.ncbi.nlm.nih.gov/18226492/
Brown, J. D., V.
Piccuillo, et al. (2012). "Retroelement demethylation
associated with
abnormal placentation in Mus musculus x Mus caroli hybrids." Biol
Reprod 86(3):
88. https://pubmed.ncbi.nlm.nih.gov/22116807/
Brown, J. D., M.
Strbuncelj, et al. (2002). "Interspecific hybridization
induced
amplification of Mdm2 on double minutes in a Mus hybrid." Cytogenet
Genome
Res 98(2-3):
184-188. https://pubmed.ncbi.nlm.nih.gov/12698001/
Bucheton, A. (1990).
"I transposable elements and I-R hybrid dysgenesis in
Drosophila." Trends
Genet 6(1):
16-21. https://pubmed.ncbi.nlm.nih.gov/2158161/
Buggs, R. J., A. N.
Doust, et al. (2009). "Gene loss and silencing in Tragopogon
miscellus
(Asteraceae): comparison of natural and synthetic
allotetraploids." Heredity
103(1): 73-81. https://pubmed.ncbi.nlm.nih.gov/19277058/
Buggs, R. J., P. S.
Soltis, et al. (2009). "Does hybridization between divergent
progenitors
drive whole-genome duplication?" Mol Ecol 18(16): 3334-3339. https://pubmed.ncbi.nlm.nih.gov/19627486/
Buggs, R. J., L.
Zhang, et al. (2011). "Transcriptomic shock generates
evolutionary novelty
in a newly formed, natural allopolyploid plant." Curr Biol
21(7): 551-556. https://pubmed.ncbi.nlm.nih.gov/21419627/
Cara, N., C. F.
Marfil, et al. (2013). "Epigenetic patterns newly established
after
interspecific hybridization in natural populations of
Solanum." Ecol
Evol 3(11):
3764-3779. https://pubmed.ncbi.nlm.nih.gov/24198938/
Carnelossi, E. A.,
E. Lerat, et al. (2014). "Specific activation of an I-like
element in
Drosophila interspecific hybrids." Genome Biol Evol 6(7): 1806-1817. https://pubmed.ncbi.nlm.nih.gov/24966182/
Chelaifa, H., A.
Monnier, et al. (2010). "Transcriptomic changes following
recent natural
hybridization and allopolyploidy in the salt marsh species
Spartina x
townsendii and Spartina anglica (Poaceae)." New Phytol
186(1): 161-174. https://pubmed.ncbi.nlm.nih.gov/20149114/
Chester, M., J. P.
Gallagher, et al. (2012). "Extensive chromosomal variation in
a recently
formed natural allopolyploid species, Tragopogon miscellus
(Asteraceae)." Proc
Natl Acad Sci U S A 109(4):
1176-1181. https://pubmed.ncbi.nlm.nih.gov/22228301/
Comai, L., A.
Madlung, et al. (2003). "Do the different parental 'heteromes'
cause
genomic shock in newly formed allopolyploids?" Philos
Trans R Soc Lond
B Biol Sci 358(1434):
1149-1155.
https://pubmed.ncbi.nlm.nih.gov/12831481/
Comai, L., A. P.
Tyagi, et al. (2000). "Phenotypic instability and rapid gene
silencing in
newly formed arabidopsis allotetraploids." Plant Cell
12(9): 1551-1568. https://pubmed.ncbi.nlm.nih.gov/11006331/
Czypionka, T., J.
Cheng, et al. (2012). "Transcriptome changes after genome-wide
admixture
in invasive sculpins (Cottus)." Mol Ecol 21(19): 4797-4810. https://pubmed.ncbi.nlm.nih.gov/22650446/
Danilova, T. V., A.
R. Akhunova, et al. (2017). "Major structural genomic
alterations can be
associated with hybrid speciation in Aegilops markgrafii
(Triticeae)." Plant
J 92(2):
317-330. https://pubmed.ncbi.nlm.nih.gov/28776783/
Deon, G. A., L.
Glugoski, et al. (2020). "Highly Rearranged Karyotypes and
Multiple Sex
Chromosome Systems in Armored Catfishes from the Genus Harttia
(Teleostei,
Siluriformes)." Genes (Basel) 11(11).
https://pubmed.ncbi.nlm.nih.gov/33218104/
Ding, M. and Z. J.
Chen (2018). "Epigenetic perspectives on the evolution and
domestication
of polyploid plant and crops." Curr Opin Plant Biol 42: 37-48. https://pubmed.ncbi.nlm.nih.gov/29502038/
Doyle, J. J., L. E.
Flagel, et al. (2008). "Evolutionary genetics of genome merger
and
doubling in plants." Annu Rev Genet 42: 443-461. https://pubmed.ncbi.nlm.nih.gov/18983261/
Erwin, A. A., M. A.
Galdos, et al. (2015). "piRNAs Are Associated with Diverse
Transgenerational Effects on Gene and Transposon Expression in
a Hybrid
Dysgenic Syndrome of D. virilis." PLoS Genet 11(8): e1005332. https://pubmed.ncbi.nlm.nih.gov/26241928/
Fawcett, D. H., C.
K. Lister, et al. (1986). "Transposable elements controlling
I-R hybrid
dysgenesis in D. melanogaster are similar to mammalian LINEs."
Cell
47(6): 1007-1015. https://pubmed.ncbi.nlm.nih.gov/2430722/
Fisher, K. J., S. W.
Buskirk, et al. (2018). "Adaptive genome duplication affects
patterns of
molecular evolution in Saccharomyces cerevisiae." PLoS
Genet 14(5):
e1007396. https://pubmed.ncbi.nlm.nih.gov/29799840/
Fontdevila, A.
(2005). "Hybrid genome evolution by transposition." Cytogenet
Genome
Res 110(1-4):
49-55. https://pubmed.ncbi.nlm.nih.gov/16093657/
Franchini, P., A. F.
Kautt, et al. (2020). "Reconstructing the Evolutionary History
of
Chromosomal Races on Islands: A Genome-Wide Analysis of
Natural House Mouse
Populations." Mol Biol Evol 37(10):
2825-2837. https://pubmed.ncbi.nlm.nih.gov/32449753/
Gao, X., S. W. Liu,
et al. (2010). "High frequency of HMW-GS sequence variation
through
somatic hybridization between Agropyron elongatum and common
wheat." Planta
231(2): 245-250. https://pubmed.ncbi.nlm.nih.gov/19902245/
Garcia Guerreiro, M.
P. (1996). "Behaviour of the transposable elements copia and
mdg1 in
hybrids between the sibling species Drosophila melanogaster
and D.
simulans." Heredity (Edinb) 77
( Pt 1): 40-46. https://pubmed.ncbi.nlm.nih.gov/8682693/
Grandbastien, M. A.,
C. Audeon, et al. (2005). "Stress activation and genomic
impact of Tnt1
retrotransposons in Solanaceae." Cytogenet Genome Res
110(1-4): 229-241.
https://pubmed.ncbi.nlm.nih.gov/16093677/
Greaves, I. K., R.
Gonzalez-Bayon, et al. (2015). "Epigenetic Changes in
Hybrids." Plant
Physiol 168(4):
1197-1205. https://pubmed.ncbi.nlm.nih.gov/26002907/
Greaves, I. K., M.
Groszmann, et al. (2014). "Inheritance of Trans Chromosomal
Methylation
patterns from Arabidopsis F1 hybrids." Proc Natl Acad Sci
U S A 111(5):
2017-2022. https://pubmed.ncbi.nlm.nih.gov/24449910/
Greaves, I. K., M.
Groszmann, et al. (2012). "Trans chromosomal methylation in
Arabidopsis
hybrids." Proc Natl Acad Sci U S A 109(9): 3570-3575. https://pubmed.ncbi.nlm.nih.gov/22331882/
Groszmann, M., I. K.
Greaves, et al. (2011). "Changes in 24-nt siRNA levels in
Arabidopsis
hybrids suggest an epigenetic contribution to hybrid vigor." Proc
Natl
Acad Sci U S A 108(6):
2617-2622.
https://pubmed.ncbi.nlm.nih.gov/21266545/
Guerreiro, M. P.
(2014). "Interspecific hybridization as a genomic stressor
inducing
mobilization of transposable elements in Drosophila." Mob
Genet
Elements 4:
e34394. https://pubmed.ncbi.nlm.nih.gov/25136509/
Guo, X., H. Su, et
al. (2016). "De Novo Centromere Formation and Centromeric
Sequence
Expansion in Wheat and its Wide Hybrids." PLoS Genet 12(4): e1005997. https://pubmed.ncbi.nlm.nih.gov/27110907/
Han, F. P., G.
Fedak, et al. (2003). "Rapid genomic changes in interspecific
and
intergeneric hybrids and allopolyploids of Triticeae." Genome
46(4): 716-723. https://pubmed.ncbi.nlm.nih.gov/12897878/
He, G., B. Chen, et
al. (2013). "Conservation and divergence of transcriptomic and
epigenomic
variation in maize hybrids." Genome Biol 14(6): R57. https://pubmed.ncbi.nlm.nih.gov/23758703/
Hegarty, M. J., G.
L. Barker, et al. (2008). "Changes to gene expression
associated with
hybrid speciation in plants: further insights from
transcriptomic studies in
Senecio." Philos Trans R Soc Lond B Biol Sci 363(1506): 3055-3069. https://pubmed.ncbi.nlm.nih.gov/18579474/
Hegarty, M. J., G.
L. Barker, et al. (2009). "Extreme changes to gene expression
associated
with homoploid hybrid speciation." Mol Ecol 18(5): 877-889. https://pubmed.ncbi.nlm.nih.gov/19175502/
Hegarty, M. J., G.
L. Barker, et al. (2006). "Transcriptome shock after
interspecific
hybridization in senecio is ameliorated by genome
duplication." Curr
Biol 16(16):
1652-1659. https://pubmed.ncbi.nlm.nih.gov/16920628/
Hegarty, M. J., T.
Batstone, et al. (2011). "Nonadditive changes to cytosine
methylation as a
consequence of hybridization and genome duplication in Senecio
(Asteraceae)." Mol Ecol 20(1):
105-113. https://pubmed.ncbi.nlm.nih.gov/21073590/
Hénault, M., S. Marsit,
et al. (2020). "The effect of hybridization on transposable
element
accumulation in an undomesticated fungal species." Elife
9. https://pubmed.ncbi.nlm.nih.gov/32955438/
Hill-Burns, E. M.
and A. G. Clark (2010). "Functional regulatory divergence of
the innate
immune system in interspecific Drosophila hybrids." Mol
Biol Evol 27(11):
2596-2605. https://pubmed.ncbi.nlm.nih.gov/20551040/
Ivanitskaya, E., L.
Rashkovetsky, et al. (2010). "Chromosomes in a hybrid zone of
Israeli mole
rats (Spalax, Rodentia)." Genetika 46(10): 1301-1304. https://pubmed.ncbi.nlm.nih.gov/21250542/
Jones, R. N. and M.
Hegarty (2009). "Order out of chaos in the hybrid plant
nucleus." Cytogenet
Genome Res 126(4):
376-389. https://pubmed.ncbi.nlm.nih.gov/20016131/
Josefsson, C., B.
Dilkes,
et al. (2006). "Parent-dependent loss of gene silencing during
interspecies hybridization." Curr Biol 16(13): 1322-1328. https://pubmed.ncbi.nlm.nih.gov/16824920/
Kawakami, T., S. C.
Strakosh, et al. (2010). "Different scales of Ty1/copia-like
retrotransposon
proliferation in the genomes of three diploid hybrid sunflower
species." Heredity
104(4): 341-350. https://pubmed.ncbi.nlm.nih.gov/20068588/
Kelleher, E. S., N.
B. Edelman, et al. (2012). "Drosophila interspecific hybrids
phenocopy
piRNA-pathway mutants." PLoS Biol 10(11): e1001428. https://pubmed.ncbi.nlm.nih.gov/23189033/
Kidwell, M. G.
(1985). "Hybrid dysgenesis in Drosophila melanogaster: nature
and
inheritance of P element regulation." Genetics 111(2): 337-350. https://pubmed.ncbi.nlm.nih.gov/2996978/
Kidwell, M. G., J.
F. Kidwell, et al. (1977). "Hybrid Dysgenesis in DROSOPHILA
MELANOGASTER:
A Syndrome of Aberrant Traits Including Mutation, Sterility
and Male
Recombination." Genetics 86(4):
813-833. https://pubmed.ncbi.nlm.nih.gov/17248751/
Kodama, M., M. S.
Brieuc, et al. (2014). "Comparative mapping between Coho
Salmon
(Oncorhynchus kisutch) and three other salmonids suggests a
role for
chromosomal rearrangements in the retention of duplicated
regions following a
whole genome duplication event." G3 (Bethesda) 4(9): 1717-1730. https://pubmed.ncbi.nlm.nih.gov/25053705/
Kraitshtein, Z., B.
Yaakov, et al. (2010). "Genetic and epigenetic dynamics of a
retrotransposon after allopolyploidization of wheat." Genetics
186(3): 801-812. https://pubmed.ncbi.nlm.nih.gov/20823338/
Kunz, C., J.
Narangajavana, et al. (2003). "Studies on the effects of a
flanking
repetitive sequence on the expression of single-copy
transgenes in Nicotiana
sylvestris and in N. sylvestris-N. tomentosiformis hybrids." Plant
Mol
Biol 52(1):
203-215. https://pubmed.ncbi.nlm.nih.gov/12825700/
L'Hote, D., C.
Serres, et al. (2008). "Gene expression regulation in the
context of mouse
interspecific mosaic genomes." Genome Biol 9(8): R133. https://pubmed.ncbi.nlm.nih.gov/18752664/
Labrador, M., M.
Farre, et al. (1999). "Interspecific hybridization increases
transposition
rates of Osvaldo." Mol Biol Evol 16(7): 931-937. https://pubmed.ncbi.nlm.nih.gov/10406110/
Lai, Z., T.
Nakazato, et al. (2005). "Extensive chromosomal repatterning
and the
evolution of sterility barriers in hybrid sunflower species."
Genetics
171(1): 291-303. https://pubmed.ncbi.nlm.nih.gov/16183908/
Li, J. T., G. Y.
Hou, et al. (2015). "The fate of recent duplicated genes
following a
fourth-round whole genome duplication in a tetraploid fish,
common carp
(Cyprinus carpio)." Sci Rep 5:
8199. https://pubmed.ncbi.nlm.nih.gov/25645996/
Li, W., G. S.
Challa, et al. (2016). "Recurrence of Chromosome
Rearrangements and Reuse
of DNA Breakpoints in the Evolution of the Triticeae Genomes."
G3
(Bethesda) 6(12):
3837-3847. https://pubmed.ncbi.nlm.nih.gov/27729435/
Li, Z. Y. and X. H.
Ge (2007). "Unique chromosome behavior and genetic control in
Brassica x
Orychophragmus wide hybrids: a review." Plant Cell Rep
26(6): 701-710. https://pubmed.ncbi.nlm.nih.gov/17221227/
Lim, K. Y., D. E.
Soltis, et al. (2008). "Rapid chromosome evolution in recently
formed
polyploids in Tragopogon (Asteraceae)." PLoS One 3(10): e3353. https://pubmed.ncbi.nlm.nih.gov/18843372/
Liu, S. (2010).
"Distant hybridization leads to different ploidy fishes." Sci
China
Life Sci 53(4):
416-425. https://pubmed.ncbi.nlm.nih.gov/20596907/
Liu, S., Q. Qin, et
al. (2007). "The formation of the polyploid hybrids from
different
subfamily fish crossings and its evolutionary significance." Genetics
176(2): 1023-1034.
https://pubmed.ncbi.nlm.nih.gov/17507678/
Lo Bianco, S., J. C.
Masters, et al. (2017). "The evolution of the Cercopithecini:
a
(post)modern synthesis." Evol Anthropol 26(6): 336-349. https://pubmed.ncbi.nlm.nih.gov/29265656/
Lopez-Maestre, H.,
E. A. Carnelossi, et al. (2017). "Identification of
misexpressed genetic
elements in hybrids between Drosophila-related species." Sci
Rep 7:
40618. https://pubmed.ncbi.nlm.nih.gov/28091568/
Madlung, A., A. P.
Tyagi, et al. (2005). "Genomic changes in synthetic
Arabidopsis
polyploids." Plant J 41(2):
221-230. https://pubmed.ncbi.nlm.nih.gov/15634199/
Marburger, S., M. A.
Alexandrou, et al. (2018). "Whole genome duplication and
transposable
element proliferation drive genome expansion in Corydoradinae
catfishes." Proc
Biol Sci 285(1872).
https://pubmed.ncbi.nlm.nih.gov/29445022/
Marfil, C. F., E. L.
Camadro, et al. (2009). "Phenotypic instability and epigenetic
variability
in a diploid potato of hybrid origin, Solanum ruiz-lealii." BMC
Plant
Biol 9: 21.
https://pubmed.ncbi.nlm.nih.gov/19232108/
Marfil, C. F., R. W.
Masuelli, et al. (2006). "Genomic instability in Solanum
tuberosum x
Solanum kurtzianum interspecific hybrids." Genome 49(2): 104-113. https://pubmed.ncbi.nlm.nih.gov/16498460/
Martienssen, R. A.
(2010). "Heterochromatin, small RNA and post-fertilization
dysgenesis in
allopolyploid and interploid hybrids of Arabidopsis." New
Phytol 186(1):
46-53. https://pubmed.ncbi.nlm.nih.gov/20409176/
Metcalfe, C. J., K.
V. Bulazel, et al. (2007). "Genomic instability within
centromeres of
interspecific marsupial hybrids." Genetics 177(4): 2507-2517. https://pubmed.ncbi.nlm.nih.gov/18073443/
Michalak, P. (2009).
"Epigenetic, transposon and small RNA determinants of hybrid
dysfunctions." Heredity 102(1):
45-50. https://pubmed.ncbi.nlm.nih.gov/18545265/
Michalak, P. (2010).
"An eruption of mobile elements in genomes of hybrid
sunflowers." Heredity
(Edinb) 104(4):
329-330. https://pubmed.ncbi.nlm.nih.gov/20068587/
Mixao, V. and T.
Gabaldon (2017). "Hybridization and emergence of virulence in
opportunistic human yeast pathogens." Yeast. https://pubmed.ncbi.nlm.nih.gov/28681409/
Moghaddam, A. M., F.
Roudier, et al. (2011). "Additive inheritance of histone
modifications in
Arabidopsis thaliana intra-specific hybrids." Plant J
67(4): 691-700. https://pubmed.ncbi.nlm.nih.gov/21554454/
Muhlhausen, S. and
M. Kollmar (2013). "Whole genome duplication events in plant
evolution
reconstructed and predicted using myosin motor proteins." BMC
Evol Biol
13: 202. https://pubmed.ncbi.nlm.nih.gov/24053117/
Nasrallah, J. B., P.
Liu, et al. (2007). "Epigenetic mechanisms for breakdown of
self-incompatibility in interspecific hybrids." Genetics
175(4): 1965-1973.
https://pubmed.ncbi.nlm.nih.gov/17237505/
Nicolas, S. D., H.
Monod, et al. (2012). "Non-random distribution of extensive
chromosome
rearrangements in Brassica napus depends on genome
organization." Plant
J. https://pubmed.ncbi.nlm.nih.gov/22268419/
Nossa, C. W., P.
Havlak, et al. (2014). "Joint assembly and genetic mapping of
the Atlantic
horseshoe crab genome reveals ancient whole genome
duplication." Gigascience
3: 9. https://pubmed.ncbi.nlm.nih.gov/24987520/
Novikova, P. Y., I.
G. Brennan, et al. (2020). "Polyploidy breaks speciation
barriers in
Australian burrowing frogs Neobatrachus." PLoS Genet 16(5): e1008769. https://pubmed.ncbi.nlm.nih.gov/32392206/
O'Neill, R. J., M.
J. O'Neill, et al. (1998). "Undermethylation associated with
retroelement
activation and chromosome remodelling in an interspecific
mammalian
hybrid." Nature 393(6680):
68-72. https://pubmed.ncbi.nlm.nih.gov/9590690/
Parisod, C., K.
Alix, et al. (2010). "Impact of transposable elements on the
organization
and function of allopolyploid genomes." New Phytol 186(1): 37-45. https://pubmed.ncbi.nlm.nih.gov/20002321/
Parisod, C., R.
Holderegger, et al. (2010). "Evolutionary consequences of
autopolyploidy." New Phytol 186(1):
5-17. https://pubmed.ncbi.nlm.nih.gov/20070540/
Parisod, C., A.
Salmon, et al. (2009). "Rapid structural and epigenetic
reorganization
near transposable elements in hybrid and allopolyploid genomes
in
Spartina." New Phytol 184(4):
1003-1015. https://pubmed.ncbi.nlm.nih.gov/19780987/
Paun, O., F. Forest,
et al. (2009). "Hybrid speciation in angiosperms: parental
divergence
drives ploidy." New Phytol 182(2):
507-518. https://pubmed.ncbi.nlm.nih.gov/19220761/
Qin, Q., Z. Lai, et
al. (2016). "Rapid genomic changes in allopolyploids of
Carassius auratus
red var. (female symbol) x Megalobrama amblycephala (male
symbol)." Sci
Rep 6:
34417. https://pubmed.ncbi.nlm.nih.gov/27703178/
Qin, Q., Y. Wang, et
al. (2014). "Abnormal chromosome behavior during meiosis in
the allotetraploid
of Carassius auratus red var. (female symbol)xMegalobrama
amblycephala (male
symbol)." BMC Genet 15:
95. https://pubmed.ncbi.nlm.nih.gov/25178799/
Renaut, S. and L.
Bernatchez (2011). "Transcriptome-wide signature of hybrid
breakdown
associated with intrinsic reproductive isolation in lake
whitefish species
pairs (Coregonus spp. Salmonidae)." Heredity 106(6): 1003-1011. https://pubmed.ncbi.nlm.nih.gov/21119703/
Rodriguez, F. and I.
R. Arkhipova (2018). "Transposable elements and polyploid
evolution in
animals." Curr Opin Genet Dev 49:
115-123. https://pubmed.ncbi.nlm.nih.gov/29715568/
Romero-Soriano, V.,
N. Burlet, et al. (2016). "Drosophila Females Undergo Genome
Expansion
after Interspecific Hybridization." Genome Biol Evol 8(3): 556-561. https://pubmed.ncbi.nlm.nih.gov/26872773/
Sakai, C., F. Konno,
et al. (2007). "Chromosome elimination in the interspecific
hybrid medaka
between Oryzias latipes and O. hubbsi." Chromosome Res
15(6): 697-709. https://pubmed.ncbi.nlm.nih.gov/17603754/
Salmon, A., M. L.
Ainouche, et al. (2005). "Genetic and epigenetic consequences
of recent
hybridization and polyploidy in Spartina (Poaceae)." Mol
Ecol 14(4):
1163-1175. https://pubmed.ncbi.nlm.nih.gov/15773943/
Sanei, M., R.
Pickering, et al. (2011). "Loss of centromeric histone H3
(CENH3) from
centromeres precedes uniparental chromosome elimination in
interspecific barley
hybrids." Proc Natl Acad Sci U S A 108(33): E498-505. https://pubmed.ncbi.nlm.nih.gov/21746892/
Scascitelli,
M., M.
Cognet, et al. (2010). "An interspecific plant hybrid shows
novel changes
in parental splice forms of genes for splicing factors." Genetics
184(4): 975-983. https://pubmed.ncbi.nlm.nih.gov/20100939/
Scheinker,
V. S.,
E. R. Lozovskaya, et al. (1990). "A long terminal
repeat-containing
retrotransposon is mobilized during hybrid dysgenesis in
Drosophila
virilis." Proc Natl Acad Sci U S A 87(24): 9615-9619. https://pubmed.ncbi.nlm.nih.gov/2175908/
Schutt,
S., A. R.
Florl, et al. (2003). "DNA methylation in placentas of
interspecies mouse
hybrids." Genetics 165(1):
223-228. https://pubmed.ncbi.nlm.nih.gov/14504229/
Sehrish,
T., V. V.
Symonds, et al. (2014). "Gene silencing via DNA methylation in
naturally
occurring Tragopogon miscellus (Asteraceae) allopolyploids." BMC
Genomics 15:
701. https://pubmed.ncbi.nlm.nih.gov/25145399/
Senerchia,
N., F.
Felber, et al. (2016). "Differential introgression and
reorganization of
retrotransposons in hybrid zones between wild wheats." Mol
Ecol 25(11):
2518-2528. https://pubmed.ncbi.nlm.nih.gov/26678573/
Senerchia,
N., F.
Felber, et al. (2015). "Genome reorganization in F1 hybrids
uncovers the
role of retrotransposons in reproductive isolation." Proc
Biol Sci 282(1804):
20142874. https://pubmed.ncbi.nlm.nih.gov/25716787/
Shaked,
H., K.
Kashkush, et al. (2001). "Sequence elimination and cytosine
methylation
are rapid and reproducible responses of the genome to wide
hybridization and
allopolyploidy in wheat." Plant Cell 13(8): 1749-1759. https://pubmed.ncbi.nlm.nih.gov/11487690/
Shivaprasad,
P. V.,
R. M. Dunn, et al. (2012). "Extraordinary transgressive
phenotypes of
hybrid tomato are influenced by epigenetics and small
silencing RNAs." Embo
J 31(2):
257-266. https://pubmed.ncbi.nlm.nih.gov/22179699/
Silkova,
O. G., Y.
N. Ivanova, et al. (2021). "Karyotype Reorganization in
Wheat-Rye Hybrids
Obtained via Unreduced Gametes: Is There a Limit to the
Chromosome Number in
Triticale?" Plants (Basel) 10(10).
https://pubmed.ncbi.nlm.nih.gov/34685861/
Smalec,
B. M., T.
N. Heider, et al. (2019). "A centromere satellite concomitant
with
extensive karyotypic diversity across the Peromyscus genus
defies predictions of
molecular drive." Chromosome Res 27(3): 237-252. https://pubmed.ncbi.nlm.nih.gov/30771198/
Smukowski
Heil, C.,
K. Patterson, et al. (2021). "Transposable Element
Mobilization in
Interspecific Yeast Hybrids." Genome Biol Evol 13(3). https://pubmed.ncbi.nlm.nih.gov/33595639/
Soltis,
D. E.
(2009). "Polyploidy and angiosperm diversification." Am.
J. Bot.
96: 336-348. /
Tayale,
A. and C.
Parisod (2013). "Natural pathways to polyploidy in plants and
consequences
for genome reorganization." Cytogenet Genome Res 140(2-4): 79-96. https://pubmed.ncbi.nlm.nih.gov/23751271/
Ungerer,
M. C. and
T. Kawakami (2013). "Transcriptional dynamics of LTR
retrotransposons in
early generation and ancient sunflower hybrids." Genome
Biol Evol 5(2):
329-337. https://pubmed.ncbi.nlm.nih.gov/23335122/
Ungerer,
M. C., S.
C. Strakosh, et al. (2009). "Proliferation of Ty3/gypsy-like
retrotransposons in hybrid sunflower taxa inferred from
phylogenetic
data." BMC Biol 7: 40. https://pubmed.ncbi.nlm.nih.gov/19594956/
Ungerer,
M. C., S.
C. Strakosh, et al. (2006). "Genome expansion in three hybrid
sunflower
species is associated with retrotransposon proliferation." Curr
Biol
16(20): R872-873. https://pubmed.ncbi.nlm.nih.gov/17055967/
Vela,
D., A.
Fontdevila, et al. (2014). "A genome-wide survey of genetic
instability by
transposition in Drosophila hybrids." PLoS One 9(2): e88992. https://pubmed.ncbi.nlm.nih.gov/24586475/
Vrana,
P. B., J. A.
Fossella, et al. (2000). "Genetic and epigenetic
incompatibilities
underlie hybrid dysgenesis in Peromyscus." Nat Genet 25(1): 120-124. https://pubmed.ncbi.nlm.nih.gov/10802670/
Vrana,
P. B., X. J.
Guan, et al. (1998). "Genomic imprinting is disrupted in
interspecific
Peromyscus hybrids." Nat Genet 20(4):
362-365. https://pubmed.ncbi.nlm.nih.gov/9843208/
Wang,
L., G. Jia,
et al. (2021). "Altered chromatin architecture and gene
expression during
polyploidization and domestication of soybean." Plant Cell
33(5): 1430-1446. https://pubmed.ncbi.nlm.nih.gov/33730165/
Wang,
N., H. Wang,
et al. (2010). "Transpositional reactivation of the Dart
transposon family
in rice lines derived from introgressive hybridization with
Zizania latifolia."
BMC Plant Biol 10:
190. https://pubmed.ncbi.nlm.nih.gov/20796287/
Wang,
N., H. Wang,
et al. (2010). "Transpositional reactivation of the Dart
transposon family
in rice lines derived from introgressive hybridization with
Zizania
latifolia." BMC Plant Biol 10:
190. https://pubmed.ncbi.nlm.nih.gov/20796287/
Wang,
X., R. Wu, et
al. (2013). "Tissue culture-induced genetic and epigenetic
alterations in
rice pure-lines, F1 hybrids and polyploids." BMC Plant
Biol 13: 77.
https://pubmed.ncbi.nlm.nih.gov/23642214/
Wiley,
C. D., H. H.
Matundan, et al. (2008). "Patterns of hybrid loss of
imprinting reveal
tissue- and cluster-specific regulation." PLoS One 3(10): e3572. https://pubmed.ncbi.nlm.nih.gov/18958286/
Wolf,
J. B., R. J.
Oakey, et al. (2014). "Imprinted gene expression in hybrids:
perturbed
mechanisms and evolutionary implications." Heredity
(Edinb). https://pubmed.ncbi.nlm.nih.gov/24619185/
Wu,
Y., F. Lin, et
al. (2021). "Genomic mosaicism due to homoeologous exchange
generates
extensive phenotypic diversity in nascent allopolyploids." Natl
Sci Rev
8(5): nwaa277. https://pubmed.ncbi.nlm.nih.gov/34691642/
Xiao,
J., C. Song,
et al. (2013). "DNA methylation analysis of allotetraploid
hybrids of red
crucian carp (Carassius auratus red var.) and common carp
(Cyprinus carpio
L.)." PLoS One 8(2):
e56409.
https://pubmed.ncbi.nlm.nih.gov/23457564/
Xie,
S., N. Khan,
et al. (2010). "An assessment of chromosomal rearrangements in
neopolyploids of Lilium hybrids." Genome 53(6): 439-446. https://pubmed.ncbi.nlm.nih.gov/20555433/
Yaakov,
B. and K.
Kashkush (2011). "Massive alterations of the methylation
patterns around
DNA transposons in the first four generations of a newly
formed wheat
allohexaploid." Genome 54(1):
42-49. https://pubmed.ncbi.nlm.nih.gov/21217805/
Yaakov,
B. and K.
Kashkush (2011). "Methylation, transcription, and
rearrangements of
transposable elements in synthetic allopolyploids." Int J
Plant
Genomics 2011:
569826. https://pubmed.ncbi.nlm.nih.gov/21760771/
Yaakov,
B. and K.
Kashkush (2012). "Mobilization of Stowaway-like MITEs in newly
formed
allohexaploid wheat species." Plant Mol Biol 80(4-5): 419-427. https://pubmed.ncbi.nlm.nih.gov/22933118/
Yaakov,
B., K.
Meyer, et al. (2013). "Copy number variation of transposable
elements in
Triticum-Aegilops genus suggests evolutionary and
revolutionary dynamics
following allopolyploidization." Plant Cell Rep 32(10): 1615-1624. https://pubmed.ncbi.nlm.nih.gov/23807536/
Yannopoulos,
G., N.
Stamatis, et al. (1987). "hobo is responsible for the
induction of hybrid
dysgenesis by strains of Drosophila melanogaster bearing the
male recombination
factor 23.5MRF." Cell 49(4):
487-495. https://pubmed.ncbi.nlm.nih.gov/3032457/
Zhang,
H., X. Gou,
et al. (2016). "Transcriptome shock invokes disruption of
parental
expression-conserved genes in tetraploid wheat." Sci Rep
6: 26363. https://pubmed.ncbi.nlm.nih.gov/27198893/
Zhang,
X., X. Ge,
et al. (2013). "Genomic change, retrotransposon mobilization
and extensive
cytosine methylation alteration in Brassica napus
introgressions from two
intertribal hybridizations." PLoS One 8(2): e56346. https://pubmed.ncbi.nlm.nih.gov/23468861/
Zhao,
L., D. Xie,
et al. (2021). "Chromosome Stability of Synthetic-Natural
Wheat
Hybrids." Front Plant Sci 12:
654382. https://pubmed.ncbi.nlm.nih.gov/33815455/