Targeting Of Natural Genetic Engineering Within The Genome

(Wu and Burgess 2004; Holmes, Kaykov et al. 2005; Winckler, Szafranski et al. 2005; Berry, Hannenhalli et al. 2006; Van Maele, Busschots et al. 2006; Kauppi, Jasin et al. 2007; Yamada-Inagawa, Klar et al. 2007; Brady, Agosto et al. 2009; Grey, Baudat et al. 2009; Mathas, Kreher et al. 2009; Rain, Cribier et al. 2009; Uchiyama, Fujino et al. 2009; Zhang and Saier 2009; Wu, Getun et al. 2010; Zhang, Yen et al. 2010; Zheng, Ao et al. 2010; Cooper, Bacolla et al. 2011; Siol, Spaller et al. 2011; Smagulova, Gregoretti et al. 2011; Steiner, Davidow et al. 2011)

 

Table II.11. Examples of targeted natural genetic engineering.

Example

Observed specificity (mechanism)

References

DNA import and export

Special DNA uptake signals; oriT sites for initiating conjugal transfer replication

DNA uptake signals in bacterial transformation (Smith, Gwinn et al. 1999; Wang, Goodman et al. 2002; Davidsen, Rodland et al. 2004; Findlay and Redfield 2009; Maughan, Wilson et al. 2010), oriT signals in conjugative plasmids and elements (Adams, Lyras et al. 2002; Grohmann, Muth et al. 2003; Parker, Becker et al. 2005; Garcillan-Barcia, Francia et al. 2009)

Homologous recombination

Special sequences stimulating DS breaks and other biochemical events in homologous exchange

(Cromie, Hyppa et al. 2007; Bagshaw, Pitt et al. 2008; Pryce and McFarlane 2009; Steiner, Steiner et al. 2009)Chi-like sequences (Smith 1994; Sourice, Biaudet et al. 1998; El Karoui, Biaudet et al. 1999; El Karoui, Schaeffer et al. 2000; Amundsen and Smith 2007; Halpern, Chiapello et al. 2007; Dillingham and Kowalczykowski 2008); Spo11 targets and hotspots in S. cerevisiae (Fukuda, Kugou et al. 2008; Nicolas 2009; Tsai, Burt et al. 2010); M26 and other recombination hotspots in S. pombe (Smith 1994; Cromie, Hyppa et al. 2007; Pryce and McFarlane 2009; Steiner, Steiner et al. 2009); repeats in plant and animal genomes (Mezard 2006; Buard and de Massy 2007; Coop and Myers 2007; McVean 2010)

Transposon insertions at special DNA structures

Insertion at REP palindromes (transposase specificity), DNA replication forks (interaction with processivity factor)

 (Tobes and Pareja 2006);  (Jomantiene, Zhao et al. 2007);(Nunvar, Huckova et al.) (Peters and Craig 2000; Peters and Craig 2001) (Parks, Li et al. 2009)

IS200/IS605 family target site selection

DNA sequence homology

 (Barabas, Ronning et al. 2008; Guynet, Achard et al. 2009)

IS911 target site selection

InsAB transposase binding to specific DNA sequences; regulated by synthesis of InsA transposase without specificity

 (Rousseau, Loot et al. 2007)

Cassette replacement/conversion in antigenic variation

DNA sequence homology at cassette boundaries

(Barbour and Restrepo 2000; Brayton, Palmer et al. 2002; Palmer, Futse et al. 2006; Palmer and Brayton 2007; Palmer, Bankhead et al. 2009)

Site-specific recombination (phase variation, antigenic variation, insertions and excisions)

Protein recognition of DNA sequence; protein-protein interaction

 (Nash 1981), (Silverman, Zieg et al. 1979; Komano, Kim et al. 1994; Komano 1999)

 Diversity-generating retroelements

Localized mutagenesis at duplicated segment of coding region; reverse transcription, RNA-DNA sequence homology

(Medhekar and Miller 2007; Guo, Tse et al. 2008)

Mating type cassette switching (S. cerevisiae, S. pombe, Kluyveromyces lactis)

Protein recognition of DNA sequence (endonuclease or transposase cleavage at unique site), DNA sequence homology at cassette boundaries

(Haber 1998; Klar, Ivanova et al. 1998; Dalgaard and Klar 1999; Haber 2006; Klar 2007; Barsoum, Martinez et al. 2010); (Rusche and Rine 2010)

 

Immune system V(D)J joining

Cleavage at specific recombination signal sequences (recognition of RSSs by RAG1+2 transposase); flexible joining by non-homologous end joining (NHEJ) functions

 (Bassing, Swat et al. 2002; Gellert 2002)

Immune system somatic hypermutation

5’ exons of immunoglobulin sequences (transcriptional specificity determinants), DIVAC element to suppress repair

 (Honjo, Kinoshita et al. 2002; Inlay, Gao et al. 2006; Yang, Fugmann et al. 2006; Xiang and Garrard 2008; Blagodatski, Batrak et al. 2009)

Immune system class switching

Lymphokine-controlled choice of switch region transcription (promoter activation)

 (Kinoshita and Honjo 2001; Honjo, Kinoshita et al. 2002)

Budding yeast (S. cerevisaea) retroviral-like elements Ty1-Ty4

Strong preference for insertion upstream of RNA polymerase III initiation sites (protein-protein interaction of integrase with RNA polymerase III factors TFIIIB and TFIIIC).

 (Kirchner, Connolly et al. 1995; Kim, Vanguri et al. 1998; Bushman 2003; Bachman, Gelbart et al. 2005; Mou, Kenny et al. 2006)

Budding yeast retroviral-like element Ty1

Preference for insertion upstream of RNA polymerase II initiation sites rather than exons.

 (Eibel and Philippsen 1984)

Budding yeast retroviral-like element Ty5

Strong preference for insertion in transcriptionally silenced regions of the yeast genome (protein-protein interaction of integrase targeting domain (TD) with Sir4 silencing protein). Regulated in response to stress by modulation of integrase TD protein phosphorylation.

 (Zou, Ke et al. 1996; Gai and Voytas 1998; Zhu, Zou et al. 1998; Xie, Gai et al. 2001; Bushman 2003; Zhu, Dai et al. 2003; Brady, Schmidt et al. 2008); (Dai, Xie et al. 2007)

Fission yeast (S. pombe) retroviral-like elements Tf1 & Tf2

Insertion almost exclusively in intergenic regions (>98% for Tf1); biased towards PolII promoter-proximal sites, 100 – 400 bp upstream of the translation start by protein-protein interaction with transcription activators; prefers chromosome 3.

(Behrens, Hayles et al. 2000; Singleton and Levin 2002; Bowen, Jordan et al. 2003); (Bushman 2003; Kordis 2005; Leem, Ripmaster et al. 2008); (Chatterjee, Leem et al. 2009) (Novikova 2009) (Guo and Levin 2010)

MAGGY (fungal Ty3/gypsy family) retrotransposon

Targeting to heterochromatin by chromodomain in integrase protein

 (Gao, Hou et al. 2008)

Dictyostelium discoideum non-LTR retrotransposon TRE5-A

Insertion upstream of tRNA sequences by protein-protein interactions with RNA Pol III transcription factors

 (Siol, Boutliliss et al. 2006; Chung, Siol et al. 2007)

Rapidly expanding mPing transposons in rice

Insertion upstream of coding sequences

 (Naito, Zhang et al. 2009)

Drosophila ZAM LTR retrotransposons

Site-specific insertions by protein-DNA recognition

 (Faye, Arnaud et al. 2008)

Murine Leukemia Virus (MLV)

Preference for insertion upstream of transcription start sites in human genome; role for IN (integrase) and GAG proteins

 (Bushman 2003; Wu, Li et al. 2003; Mitchell, Beitzel et al. 2004); (Dunbar 2005; Lewinski, Yamashita et al. 2006)

HIV, SIV

Preference for insertion into actively transcribed regions of human genome; role for IN (integrase) and GAG proteins; HIV integrase interaction with LEDGF/p75 transcription factor

 (Mitchell, Beitzel et al. 2004; Ciuffi, Llano et al. 2005; Dunbar 2005; Ciuffi and Bushman 2006; Ciuffi, Diamond et al. 2006; Lewinski, Yamashita et al. 2006; Llano, Saenz et al. 2006; Botbol, Raghavendra et al. 2008; Ciuffi 2008); (Engelman and Cherepanov 2008; Levin, Rosenbluh et al. 2010)

Gammaretroviral (but not lentiviral) vectors

Insertion at transcription factor binding sites; 21% recurrence rate at hotspots

 (Cattoglio, Facchini et al. 2007; Deichmann, Hacein-Bey-Abina et al. 2007; Felice, Cattoglio et al. 2009)

Drosophila gypsy retrovirus

Site-specific insertion into Ovo locus regulatory region guided by Ovo protein binding sites

 (Labrador and Corces 2001; Labrador, Sha et al. 2008)

Drosophila P-factors

Preference for insertion into the 5’ end of transcripts

 (Spradling, Stern et al. 1995)

Drosophila P-factors

Targeting (“homing”) to regions of transcription factor function by incorporation of cognate binding site; region-specific

 (Kassis, Noll et al. 1992; Taillebourg and Dura 1999; Bender and Hudson 2000) (Fauvarque and Dura 1983; Hama, Ali et al. 1990; Kassis 2002)

HeT-A and TART retrotransposons

Insertion at Drosophila telomeres

 (Casacuberta and Pardue 2002; Casacuberta and Pardue 2003; Casacuberta and Pardue 2003; Pardue and DeBaryshe 2003)

R1 and R2 LINE element retrotransposons

Insertion in arthropod ribosomal 28S coding sequences (sequence-specific homing endonuclease)

 (Xiong, Burke et al. 1988; Xiong and Eickbush 1988; Xiong and Eickbush 1988; Burke, Malik et al. 1989)

Group I homing introns (DNA based)

Site-specific insertion into coding sequences in bacteria and eukaryotes (sequence-specific endonuclease)

 (Belfort and Perlman 1995)

Group II homing introns (RNA based)

Site-specific insertion into coding sequences in bacteria and eukaryotes (RNA recognition of DNA sequence motifs, reverse transcription)

 (Mohr, Smith et al. 2000; Karberg, Guo et al. 2001)

Group II intron retroelements

Insertion after intrinsic transcriptional terminators.

 (Robart, Seo et al. 2007)

 

 

Homologous recombination

 

(Martini and Keeney 2002; Nishant and Rao 2006; Nicolas 2009; Parvanov, Ng et al. 2009; Ding, Haraguchi et al. 2010; Getun, Wu et al. 2010; Paigen and Petkov 2010; Szekvolgyi and Nicolas 2010; Wahls and Davidson 2010; Grey, Sommermeyer et al. 2011; Segurel, Leffler et al. 2011)

 

Chromosome fragile sites

 

(Le Beau 1986; Yunis 1987; Moriarty and Webster 2003; Ishii and Furukawa 2004; Arlt, Durkin et al. 2006; Glover 2006; O'Keefe and Richards 2006; Durkin and Glover 2007; Ruiz-Herrera and Robinson 2007; Smith, McAvoy et al. 2007; Pichiorri, Ishii et al. 2008; Burrow, Williams et al. 2009; Casper, Greenwell et al. 2009; Gericke 2010)

 

Viral integration

 

(Barr, Ciuffi et al. 2006; Moalic, Blanchard et al. 2006; Derse, Crise et al. 2007; Albanese, Arosio et al. 2008; Brady, Lee et al. 2009; Santoni, Hartley et al. 2010)

 

Agrobacterium T-DNA insertion

 

(Pelczar, Kalck et al. 2004; Muller, Atkinson et al. 2007; Lacroix and Citovsky 2009)

 

Diversity-generating retroelements

 

(Doulatov, Hodes et al. 2004; Medhekar and Miller 2007; Guo, Tse et al. 2008; Kojima and Kanehisa 2008; Miller, Le Coq et al. 2008; Baucom, Estill et al. 2009; Baucom, Estill et al. 2009; Guo, Tse et al. 2011)

 

Group II retrohoming introns

 

(Mohr, Smith et al. 2000; Karberg, Guo et al. 2001; Dai and Zimmerly 2002; Zhong, Karberg et al. 2003; Jones, Kierlin et al. 2005; Yao and Lambowitz 2007; Mastroianni, Watanabe et al. 2008; Toor, Rajashankar et al. 2008; Zhuang, Mastroianni et al. 2009)

 

DNA transposition

 

(Craig 1991; Wolkow, DeBoy et al. 1996; Ketting, Fischer et al. 1997; Akagi, Yokozeki et al. 2001; Lee, Neiditch et al. 2002; Timakov, Liu et al. 2002; Preclin, Martin et al. 2003; Tsai, Chatterji et al. 2003; Loot, Turlan et al. 2004; Walser, Chen et al. 2006; Kiss, Nagy et al. 2007; Linheiro and Bergman 2008; Chandler 2009; Liu, Yeh et al. 2009; Post and Hall 2009; Zhang and Saier 2009; Gangadharan, Mularoni et al. 2010; Levy, Schwartz et al. 2010; Rawal and Ramaswamy 2011)

 

            Tn7: (Nnalue 1990; Craig 1991; Hagemann and Craig 1993; Wolkow, DeBoy et al. 1996; Peters and Craig 2000; Peters and Craig 2001; Finn, Parks et al. 2007; Shi, Parks et al. 2008; Parks and Peters 2009)

 

Retrovirus and retrotransposon insertion

 

(Zou and Voytas 1997; Cost and Boeke 1998; Jurka, Klonowski et al. 1998; Huang, Hong et al. 1999; Szafranski, Glockner et al. 1999; Beck, Dingermann et al. 2002; De Palma, Montini et al. 2005; Johnson and Levy 2005; Repanas, Zingler et al. 2007; Brady, Fuerst et al. 2008; Hare and Cherepanov 2009; Levy, Schwartz et al. 2010; Santoni, Hartley et al. 2010; Rawal and Ramaswamy 2011; Siol, Spaller et al. 2011)

 

Somatic hypermutation and class switching

 

(Chaudhuri, Tian et al. 2003; Odegard, Kim et al. 2005; Odegard and Schatz 2006; Yang and Schatz 2007; Hackney, Misaghi et al. 2009; Maul and Gearhart 2010; Maul and Gearhart 2010; Tanaka, Shen et al. 2010)

 

Ciliate macronuclear rearrangements: (Gortz, Kuhlmann et al. 1999; Prescott 2000; Betermier 2004; Juranek and Lipps 2007; Lepere, Betermier et al. 2008; Baudry, Malinsky et al. 2009; Duharcourt, Lepere et al. 2009; Clark 2010)

 

Synthetic targeting: (Beck, Dingermann et al. 2002; Sandrin, Russell et al. 2003; Egli, Hafen et al. 2004; Hematti, Hong et al. 2004; Horn and Handler 2005; Ciuffi, Diamond et al. 2006; Garcia-Otin and Guillou 2006; Cui and Davis 2007; Ivics, Katzer et al. 2007; Frecha, Szecsi et al. 2008; Voigt, Izsvak et al. 2008; Yu and Kim 2008; Ziegler, Yang et al. 2008; Cai, Doyon et al. 2009; Deyle and Russell 2009; Feng, Bednarz et al. 2009; Foley, Yeh et al. 2009; Galvan, Nakazawa et al. 2009; Kim, Lee et al. 2009; Weng, Chen et al. 2009; Christian, Cermak et al. 2010; Craigie 2010; Karan, Frederick et al. 2010; Lim, Klimczak et al. 2010; Urnov, Rebar et al. 2010; Vasquez 2010; Weinthal, Tovkach et al. 2010; Zhang, Kutner et al. 2010; Bogdanove and Voytas 2011; Huda, Bowen et al. 2011; Li, Huang et al. 2011; Mahfouz, Li et al. 2011)

 

http://www.nature.com/nmeth/focus/moy2011/index.html; http://www.cellectis-bioresearch.com/custom-talen-service?utm_source=jbc&utm_medium=; http://www.cellectis-bioresearch.com/gene-function?utm_source=jbc&utm_medium=etoc120224&utm_campaign=gene-function

 

REFERENCES

 

Adams, V., D. Lyras, et al. (2002). "The clostridial mobilisable transposons." Cell Mol Life Sci 59(12): 2033-2043. http://www.ncbi.nlm.nih.gov/pubmed/12568329.

Akagi, H., Y. Yokozeki, et al. (2001). "Micron, a microsatellite-targeting transposable element in the rice genome." Mol Genet Genomics 266(3): 471-480. http://www.ncbi.nlm.nih.gov/pubmed/11713677.

Albanese, A., D. Arosio, et al. (2008). "HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery." PLoS One 3(6): e2413. http://www.ncbi.nlm.nih.gov/pubmed/18545681.

Amundsen, S. K. and G. R. Smith (2007). "Chi hotspot activity in Escherichia coli without RecBCD exonuclease activity: implications for the mechanism of recombination." Genetics 175(1): 41-54. http://www.ncbi.nlm.nih.gov/pubmed/17110484.

Arlt, M. F., S. G. Durkin, et al. (2006). "Common fragile sites as targets for chromosome rearrangements." DNA Repair (Amst) 5(9-10): 1126-1135. http://www.ncbi.nlm.nih.gov/pubmed/16807141.

Bachman, N., M. E. Gelbart, et al. (2005). "TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs." Genes Dev 19(8): 955-964. http://www.ncbi.nlm.nih.gov/pubmed/15833918.

Bagshaw, A. T., J. P. Pitt, et al. (2008). "High frequency of microsatellites in S. cerevisiae meiotic recombination hotspots." BMC Genomics 9: 49. http://www.ncbi.nlm.nih.gov/pubmed/18226240.

Barabas, O., D. R. Ronning, et al. (2008). "Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection." Cell 132(2): 208-220. http://www.ncbi.nlm.nih.gov/pubmed/18243097.

Barbour, A. G. and B. I. Restrepo (2000). "Antigenic variation in vector-borne pathogens." Emerg Infect Dis 6(5): 449-457. http://www.ncbi.nlm.nih.gov/pubmed/10998374.

Barr, S. D., A. Ciuffi, et al. (2006). "HIV integration site selection: targeting in macrophages and the effects of different routes of viral entry." Mol Ther 14(2): 218-225. http://www.ncbi.nlm.nih.gov/pubmed/16647883.

Barsoum, E., P. Martinez, et al. (2010). "α3, a transposable element that promotes host sexual reproduction." Genes Dev 24: 33-44. http://www.ncbi.nlm.nih.gov/pubmed/20008928.

Bassing, C. H., W. Swat, et al. (2002). "The mechanism and regulation of chromosomal V(D)J recombination." Cell 109: S45-55. http://www.ncbi.nlm.nih.gov/pubmed/11983152.

Baucom, R. S., J. C. Estill, et al. (2009). "Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome." PLoS Genet 5(11): e1000732. http://www.ncbi.nlm.nih.gov/pubmed/19936065.

Baudry, C., S. Malinsky, et al. (2009). "PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia." Genes Dev 23(21): 2478-2483. http://www.ncbi.nlm.nih.gov/pubmed/19884254.

Beck, P., T. Dingermann, et al. (2002). "Transfer RNA gene-targeted retrotransposition of Dictyostelium TRE5-A into a chromosomal UMP synthase gene trap." J Mol Biol 318(2): 273-285. http://www.ncbi.nlm.nih.gov/pubmed/12051837.

Behrens, R., J. Hayles, et al. (2000). "Fission yeast retrotransposon Tf1 integration is targeted to 5' ends of open reading frames." Nucleic Acids Res 28(23): 4709-4716. http://www.ncbi.nlm.nih.gov/pubmed/11095681.

Belfort, M. and P. S. Perlman (1995). "Mechanisms of intron mobility." J Biol Chem 270(51): 30237-30240. http://www.ncbi.nlm.nih.gov/pubmed/8530436.

Bender, W. and A. Hudson (2000). "P element homing to the Drosophila bithorax complex." Development 127(18): 3981-3992. http://www.ncbi.nlm.nih.gov/pubmed/10952896.

Berry, C., S. Hannenhalli, et al. (2006). "Selection of target sites for mobile DNA integration in the human genome." PLoS Comput Biol 2(11): e157. http://www.ncbi.nlm.nih.gov/pubmed/17166054.

Betermier, M. (2004). "Large-scale genome remodelling by the developmentally programmed elimination of germ line sequences in the ciliate Paramecium." Res Microbiol 155(5): 399-408. http://www.ncbi.nlm.nih.gov/pubmed/15207872.

Blagodatski, A., V. Batrak, et al. (2009). "A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation." PLoS Genet 5(1): e1000332. http://www.ncbi.nlm.nih.gov/pubmed/19132090.

Bogdanove, A. J. and D. F. Voytas (2011). "TAL effectors: customizable proteins for DNA targeting." Science 333(6051): 1843-1846. http://www.ncbi.nlm.nih.gov/pubmed/21960622.

Botbol, Y., N. K. Raghavendra, et al. (2008). "Chromatinized templates reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro." Nucleic Acids Res 36(4): 1237-1246. http://www.ncbi.nlm.nih.gov/pubmed/18174227.

Bowen, N. J., I. K. Jordan, et al. (2003). "Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe." Genome Res 13(9): 1984-1997. http://www.ncbi.nlm.nih.gov/pubmed/12952871.

Brady, T., L. M. Agosto, et al. (2009). "HIV integration site distributions in resting and activated CD4+ T cells infected in culture." AIDS Rev 23(12): 1461-1471. http://www.ncbi.nlm.nih.gov/pubmed/19550285.

Brady, T., Y. N. Lee, et al. (2009). "Integration target site selection by a resurrected human endogenous retrovirus." Genes Dev 23(5): 633-642. http://www.ncbi.nlm.nih.gov/pubmed/19270161.

Brady, T. L., P. G. Fuerst, et al. (2008). "Retrotransposon target site selection by imitation of a cellular protein." Mol Cell Biol 28(4): 1230-1239. http://www.ncbi.nlm.nih.gov/pubmed/18086891.

Brady, T. L., C. L. Schmidt, et al. (2008). "Targeting integration of the Saccharomyces Ty5 retrotransposon." Methods Mol Biol 435: 153-163. http://www.ncbi.nlm.nih.gov/pubmed/18370074.

Brayton, K. A., G. H. Palmer, et al. (2002). "Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion." Mol Microbiol 43(5): 1151-1159. http://www.ncbi.nlm.nih.gov/pubmed/11918803.

Buard, J. and B. de Massy (2007). "Playing hide and seek with mammalian meiotic crossover hotspots." Trends Genet 23(6): 301-309. http://www.ncbi.nlm.nih.gov/pubmed/17434233.

Burke, W. D., H. S. Malik, et al. (1989). "The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods." Mol Biol Evol 16(4): 502-511. http://www.ncbi.nlm.nih.gov/pubmed/10331276.

Burrow, A. A., L. E. Williams, et al. (2009). "Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites." BMC Genomics 10: 59. http://www.ncbi.nlm.nih.gov/pubmed/19183484.

Bushman, F. D. (2003). "Targeting survival: integration site selection by retroviruses and LTR-retrotransposons." Cell 115(2): 135-138. http://www.ncbi.nlm.nih.gov/pubmed/14567911.

Cai, C. Q., Y. Doyon, et al. (2009). "Targeted transgene integration in plant cells using designed zinc finger nucleases." Plant Mol Biol 69(6): 699-709. http://www.ncbi.nlm.nih.gov/pubmed/19112554.

Casacuberta, E. and M. L. Pardue (2002). "Coevolution of the telomeric retrotransposons across Drosophila species." Genetics 161(3): 1113-1124. http://www.ncbi.nlm.nih.gov/pubmed/12136015.

Casacuberta, E. and M. L. Pardue (2003). "HeT-A elements in Drosophila virilis: retrotransposon telomeres are conserved across the Drosophila genus." Proc Natl Acad Sci U S A 100(24): 14091-14096. http://www.ncbi.nlm.nih.gov/pubmed/14614149.

Casacuberta, E. and M. L. Pardue (2003). "Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group." Proc Natl Acad Sci U S A 100(6): 3363-3368. http://www.ncbi.nlm.nih.gov/pubmed/12626755\.

Casper, A. M., P. W. Greenwell, et al. (2009). "Chromosome aberrations resulting from double-strand DNA breaks at a naturally occurring yeast fragile site composed of inverted ty elements are independent of Mre11p and Sae2p." Genetics 183(2): 423-439, 421SI-426SI. http://www.ncbi.nlm.nih.gov/pubmed/19635935.

Cattoglio, C., G. Facchini, et al. (2007). "Hot spots of retroviral integration in human CD34+ hematopoietic cells." Blood 110(6): 1770-1778. http://www.ncbi.nlm.nih.gov/pubmed/17507662.

Chandler, M. (2009). "Clamping down on transposon targeting." Cell 138(4): 621-623. http://www.ncbi.nlm.nih.gov/pubmed/19703389.

Chatterjee, A. G., Y. E. Leem, et al. (2009). "The chromodomain of Tf1 integrase promotes binding to cDNA and mediates target site selection." J Virol 83(6): 2675-2685. http://www.ncbi.nlm.nih.gov/pubmed/19109383.

Chaudhuri, J., M. Tian, et al. (2003). "Transcription-targeted DNA deamination by the AID antibody diversification enzyme." Nature 422(6933): 726-730. http://www.ncbi.nlm.nih.gov/pubmed/12692563.

Christian, M., T. Cermak, et al. (2010). "Targeting DNA double-strand breaks with TAL effector nucleases." Genetics 186(2): 757-761. http://www.ncbi.nlm.nih.gov/pubmed/20660643.

Chung, T., O. Siol, et al. (2007). "Protein interactions involved in tRNA gene-specific integration of Dictyostelium discoideum non-long terminal repeat retrotransposon TRE5-A." Mol Cell Biol 27(24): 8492-8501. http://www.ncbi.nlm.nih.gov/pubmed/17923679.

Ciuffi, A. (2008). "Mechanisms governing lentivirus integration site selection." Curr Gene Ther 8(6): 419-429. http://www.ncbi.nlm.nih.gov/pubmed/19075625.

Ciuffi, A. and F. D. Bushman (2006). "Retroviral DNA integration: HIV and the role of LEDGF/p75." Trends Genet 22(7): 388-395. http://www.ncbi.nlm.nih.gov/pubmed/16730094.

Ciuffi, A., T. L. Diamond, et al. (2006). "Modulating target site selection during human immunodeficiency virus DNA integration in vitro with an engineered tethering factor." Hum Gene Ther 17(9): 960-967. http://www.ncbi.nlm.nih.gov/pubmed/16972764.

Ciuffi, A., M. Llano, et al. (2005). "A role for LEDGF/p75 in targeting HIV DNA integration." Nat Med 11(12): 1287-1289. http://www.ncbi.nlm.nih.gov/pubmed/16311605.

Clark, K. B. (2010). "On classical and quantum error-correction in ciliate mate selection." Commun Integr Biol 3(4): 374-378. http://www.ncbi.nlm.nih.gov/pubmed/20798831.

Coop, G. and S. R. Myers (2007). "Live hot, die young: transmission distortion in recombination hotspots." PLoS Genet 3(3): e35. http://www.ncbi.nlm.nih.gov/pubmed/17352536.

Cooper, D. N., A. Bacolla, et al. (2011). "On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease." Hum Mutat 32(10): 1075-1099. http://www.ncbi.nlm.nih.gov/pubmed/21853507.

Cost, G. J. and J. D. Boeke (1998). "Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure." Biochemistry 37(51): 18081-18093. http://www.ncbi.nlm.nih.gov/pubmed/9922177.

Craig, N. L. (1991). "Tn7: a target site-specific transposon." Mol Microbiol 5(11): 2569-2573. http://www.ncbi.nlm.nih.gov/pubmed/1664019.

Craigie, R. (2010). "Targeting HIV-1 DNA integration by swapping tethers." Proc Natl Acad Sci U S A\ 107\(7\): 2735-2736\. http://www.ncbi.nlm.nih.gov/pubmed/20145107\.

Cromie, G. A., R. W. Hyppa, et al. (2007). "A discrete class of intergenic DNA dictates meiotic DNA break hotspots in fission yeast." PLoS Genet 3(8): e141. http://www.ncbi.nlm.nih.gov/pubmed/17722984.

Cui, X. and G. Davis (2007). "Mobile group II intron targeting: applications in prokaryotes and perspectives in\ eukaryotes." Front Biosci\ 12\: 4972-4985\. http://www.ncbi.nlm.nih.gov/pubmed/17569624\.

Dai, J., W. Xie, et al. (2007). "Phosphorylation regulates integration of the yeast Ty5 retrotransposon into heterochromatin." Mol Cell 27(2): 289-299. http://www.ncbi.nlm.nih.gov/pubmed/17643377.

Dai, L. and S. Zimmerly (2002). "Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior." Nucleic Acids Res 30(5): 1091-1102. http://www.ncbi.nlm.nih.gov/pubmed/11861899.

Dalgaard, J. Z. and A. J. Klar (1999). "Orientation of DNA replication establishes mating-type switching pattern in S. pombe." Nature 400(6740): 181-184. http://www.ncbi.nlm.nih.gov/pubmed/10408447.

Davidsen, T., E. A. Rodland, et al. (2004). "Biased distribution of DNA uptake sequences towards genome maintenance genes." Nucleic Acids Res 32(3): 1050-1058. http://www.ncbi.nlm.nih.gov/pubmed/14960717.

De Palma, M., E. Montini, et al. (2005). "Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells." Blood 105(6): 2307-2315. http://www.ncbi.nlm.nih.gov/pubmed/15542582.

Deichmann, A., S. Hacein-Bey-Abina, et al. (2007). "Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy." J Clin Invest\ 117(8): 2225-2232. http://www.ncbi.nlm.nih.gov/pubmed/17671652.

Derse, D., B. Crise, et al. (2007). "Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses." J Virol 81(12): 6731-6741. http://www.ncbi.nlm.nih.gov/pubmed/17409138.

Deyle, D. R. and D. W. Russell (2009). "Adeno-associated virus vector integration." Curr Opin Mol Ther 11(4): 442-447. http://www.ncbi.nlm.nih.gov/pubmed/19649989.

Dillingham, M. S. and S. C. Kowalczykowski (2008). "RecBCD enzyme and the repair of double-stranded DNA breaks." Microbiol Mol Biol Rev 72(4): 642-671. http://www.ncbi.nlm.nih.gov/pubmed/19052323.

Ding, D. Q., T. Haraguchi, et al. (2010). "From meiosis to postmeiotic events: alignment and recognition of homologous chromosomes in meiosis." FEBS J 277(3): 565-570. http://www.ncbi.nlm.nih.gov/pubmed/20015081.

Doulatov, S., A. Hodes, et al. (2004). "Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements." Nature 431(7007): 476-481. http://www.ncbi.nlm.nih.gov/pubmed/15386016.

Duharcourt, S., G. Lepere, et al. (2009). "Developmental genome rearrangements in ciliates: a natural genomic subtraction mediated by non-coding transcripts." Trends Genet 25(8): 344-350. http://www.ncbi.nlm.nih.gov/pubmed/19596481.

Dunbar, C. E. (2005). "Stem cell gene transfer: insights into integration and hematopoiesis from primate genetic marking studies." Ann N Y Acad Sci 1044: 178-182\. http://www.ncbi.nlm.nih.gov/pubmed/15958711.

Durkin, S. G. and T. W. Glover (2007). "Chromosome fragile sites." Annu Rev Genet 41: 169-192. http://www.ncbi.nlm.nih.gov/pubmed/17608616.

Egli, D., E. Hafen, et al. (2004). "An efficient method to generate chromosomal rearrangements by targeted DNA double-strand breaks in Drosophila melanogaster." Genome Res 14(7): 1382-1393. http://www.ncbi.nlm.nih.gov/pubmed/15197166.

Eibel, H. and P. Philippsen (1984). "Preferential integration of yeast transposable element Ty into a promoter region." Nature 307(5949): 386-388. http://www.ncbi.nlm.nih.gov/pubmed/6320003.

El Karoui, M., V. Biaudet, et al. (1999). "Characteristics of Chi distribution on different bacterial genomes." Res Microbiol 150(9-10): 579-587. http://www.ncbi.nlm.nih.gov/pubmed/10672998.

El Karoui, M., M. Schaeffer, et al. (2000). "Orientation specificity of the Lactococcus lactis Chi site." Genes Cells 5(6): 453-461. http://www.ncbi.nlm.nih.gov/pubmed/10886371.

Engelman, A. and P. Cherepanov (2008). "The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication." PLoS Pathog 4(3): e1000046. http://www.ncbi.nlm.nih.gov/pubmed/18369482.

Fauvarque, M. O. and J. M. Dura (1983). "polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila." Genes Dev 7(8): 1508-1520. http://www.ncbi.nlm.nih.gov/pubmed/8101825.

Faye, B., F. Arnaud, et al. (2008). "Functional characteristics of a highly specific integrase encoded by an LTR-retrotransposon." PLoS One 3(9): e3185. http://www.ncbi.nlm.nih.gov/pubmed/18784842.

Felice, B., C. Cattoglio, et al. (2009). "Transcription factor binding sites are genetic determinants of retroviral integration in the human genome." PLoS One 4(2): e4571. http://www.ncbi.nlm.nih.gov/pubmed/19238208.

Feng, X., A. L. Bednarz, et al. (2009). "Precise targeted integration by a chimaeric transposase zinc-finger fusion\ protein." Nucleic Acids Res\. http://www.ncbi.nlm.nih.gov/pubmed/19965773\.

Findlay, W. A. and R. J. Redfield (2009). "Coevolution of DNA uptake sequences and bacterial proteomes." Genome Biol Evol 1: 45-55. http://www.ncbi.nlm.nih.gov/pubmed/20333176\.

Finn, J. A., A. R. Parks, et al. (2007). "Transposon Tn7 directs transposition into the genome of filamentous bacteriophage M13 using the element-encoded TnsE protein." J Bacteriol 189(24): 9122-9125. http://www.ncbi.nlm.nih.gov/pubmed/17921297.

Foley, J. E., J. R. Yeh, et al. (2009). "Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN)." PLoS One 4(2): e4348. http://www.ncbi.nlm.nih.gov/pubmed/19198653.

Frecha, C., J. Szecsi, et al. (2008). "Strategies for targeting lentiviral vectors." Curr Gene Ther\ 8\(6\): 449-460\. http://www.ncbi.nlm.nih.gov/pubmed/19075628\.

Fukuda, T., K. Kugou, et al. (2008). "Targeted induction of meiotic double-strand breaks reveals chromosomal domain-dependent regulation of Spo11 and interactions among potential sites of meiotic recombination." Nucleic Acids Res 36(3): 984-997. http://www.ncbi.nlm.nih.gov/pubmed/18096626\.

Gai, X. and D. F. Voytas (1998). "A single amino acid change in the yeast retrotransposon Ty5 abolishes targeting to silent chromatin." Mol Cell 1(7): 1051-1055. http://www.ncbi.nlm.nih.gov/pubmed/9651588.

Galvan, D. L., Y. Nakazawa, et al. (2009). "Genome-wide mapping of PiggyBac transposon integrations in primary human T cells." J Immunother 32(8): 837-844. http://www.ncbi.nlm.nih.gov/pubmed/19752750.

Gangadharan, S., L. Mularoni, et al. (2010). "DNA transposon Hermes inserts into DNA in nucleosome-free regions in vivo." Proc Natl Acad Sci U S A 107(51): 21966-21972. http://www.ncbi.nlm.nih.gov/pubmed/21131571.

Gao, X., Y. Hou, et al. (2008). "Chromodomains direct integration of retrotransposons to heterochromatin." Genome Res 18(3): 359-369. http://www.ncbi.nlm.nih.gov/pubmed/18256242.

Garcia-Otin, A. L. and F. Guillou (2006). "Mammalian genome targeting using site-specific recombinases." Front Biosci\ 11\: 1108-1136\. http://www.ncbi.nlm.nih.gov/pubmed/16146801\.

Garcillan-Barcia, M. P., M. V. Francia, et al. (2009). "The diversity of conjugative relaxases and its application in plasmid classification." FEMS Microbiol Rev 33(3): 657-687. http://www.ncbi.nlm.nih.gov/pubmed/19396961.

Gellert, M. (2002). "V(D)J recombination: RAG proteins, repair factors, and regulation." Ann Rev Biochem 71: 101-132. http://www.ncbi.nlm.nih.gov/pubmed/12045092.

Gericke, G. S. (2010). "Common chromosomal fragile sites (CFS) may be involved in normal and traumatic cognitive stress memory consolidation and altered nervous system immunity." Med Hypotheses\ 74\(5\): 911-918\. http://www.ncbi.nlm.nih.gov/pubmed/20138440\.

Getun, I. V., Z. K. Wu, et al. (2010). "Nucleosome occupancy landscape and dynamics at mouse recombination hotspots." EMBO Rep 11(7): 555-560. http://www.ncbi.nlm.nih.gov/pubmed/20508641.

Glover, T. W. (2006). "Common fragile sites." Cancer Lett 232(1): 4-12. http://www.ncbi.nlm.nih.gov/pubmed/16229941.

Gortz, H. D., H. W. Kuhlmann, et al. (1999). "Intra- and intercellular communication systems in ciliates." Naturwissenschaften 86(9): 422-434. http://www.ncbi.nlm.nih.gov/pubmed/10501690.

Grey, C., F. Baudat, et al. (2009). "Genome-wide control of the distribution of meiotic recombination." PLoS Biol 7(2): e35. http://www.ncbi.nlm.nih.gov/pubmed/19226188.

Grey, C., V. Sommermeyer, et al. (2011). "[What defines the genetic map? The specification of meiotic recombination sites]." Med Sci (Paris) 27(1): 63-69. http://www.ncbi.nlm.nih.gov/pubmed/21299964.

Grohmann, E., G. Muth, et al. (2003). "Conjugative plasmid transfer in gram-positive bacteria." Microbiol Mol Biol Rev 67(2): 277-301. http://www.ncbi.nlm.nih.gov/pubmed/12794193.

Guo, H., L. V. Tse, et al. (2008). "Diversity-generating retroelement homing regenerates target sequences for repeated rounds of codon rewriting and protein diversification." Mol Cell 31(6): 813-823. http://www.ncbi.nlm.nih.gov/pubmed/18922465.

Guo, H., L. V. Tse, et al. (2011). "Target site recognition by a diversity-generating retroelement." PLoS Genet 7(12): e1002414. http://www.ncbi.nlm.nih.gov/pubmed/22194701.

Guo, Y. and H. L. Levin (2010). "High-throughput sequencing of retrotransposon integration provides a saturated profile of target activity in Schizosaccharomyces pombe." Genome Res 20(2): 239-248. http://www.ncbi.nlm.nih.gov/pubmed/20040583.

Guynet, C., A. Achard, et al. (2009). "Resetting the site: redirecting integration of an insertion sequence in a predictable way." Mol Cell 34(5): 612-619. http://www.ncbi.nlm.nih.gov/pubmed/19524540.

Haber, J. E. (1998). "Mating-type gene switching in Saccharomyces cerevisiae." Annu Rev Genet 32: 561-599. http://www.ncbi.nlm.nih.gov/pubmed/9928492.

Haber, J. E. (2006). "Transpositions and translocations induced by site-specific double-strand breaks in budding yeast." DNA Repair (Amst) 5(9-10): 998-1009. http://www.ncbi.nlm.nih.gov/pubmed/16807137.

Hackney, J. A., S. Misaghi, et al. (2009). "DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination." Adv Immunol 101: 163-189. http://www.ncbi.nlm.nih.gov/pubmed/19231595.

Hagemann, A. T. and N. L. Craig (1993). "Tn7 transposition creates a hotspot for homologous recombination at the transposon donor site." Genetics 133(1): 9-16. http://www.ncbi.nlm.nih.gov/pubmed/8380272.

Halpern, D., H. Chiapello, et al. (2007). "Identification of DNA motifs implicated in maintenance of bacterial core genomes by predictive modeling." PLoS Genet 3(9): 1614-1621. http://www.ncbi.nlm.nih.gov/pubmed/17941709.

Hama, C., Z. Ali, et al. (1990). "Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter." Genes Dev 4(7): 1079-1093. http://www.ncbi.nlm.nih.gov/pubmed/1976568.

Hare, S. and P. Cherepanov (2009). "The Interaction Between Lentiviral Integrase and LEDGF: Structural and Functional Insights." Viruses 1(3): 780-801. http://www.ncbi.nlm.nih.gov/pubmed/21994569.

Hematti, P., B. K. Hong, et al. (2004). "Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells." PLoS Biol 2(12): e423. http://www.ncbi.nlm.nih.gov/pubmed/15550989.

Holmes, A. M., A. Kaykov, et al. (2005). "Molecular and cellular dissection of mating-type switching steps in Schizosaccharomyces pombe." Mol Cell Biol 25(1): 303-311. http://www.ncbi.nlm.nih.gov/pubmed/15601851.

Honjo, T., K. Kinoshita, et al. (2002). "Molecular mechanism of class switch recombination: linkage with somatic hypermutation." Annu Rev Immunol 20: 165-196. http://www.ncbi.nlm.nih.gov/pubmed/11861601.

Horn, C. and A. M. Handler (2005). "Site-specific genomic targeting in Drosophila." Proc Natl Acad Sci U S A\ 102\(35\): 12483-12488\. http://www.ncbi.nlm.nih.gov/pubmed/16116081\.

Huang, H., J. Y. Hong, et al. (1999). "Host genes that affect the target-site distribution of the yeast retrotransposon Ty1." Genetics 151(4): 1393-1407. http://www.ncbi.nlm.nih.gov/pubmed/10101165.

Huda, A., N. J. Bowen, et al. (2011). "Epigenetic regulation of transposable element derived human gene promoters." Gene 475(1): 39-48. http://www.ncbi.nlm.nih.gov/pubmed/21215797.

Inlay, M. A., H. H. Gao, et al. (2006). "Roles of the Ig kappa light chain intronic and 3' enhancers in Igk somatic hypermutation." J Immunol 177(2): 1146-1151. http://www.ncbi.nlm.nih.gov/pubmed/16818772.

Ishii, H. and Y. Furukawa (2004). "Alterations of common chromosome fragile sites in hematopoietic malignancies." Int J Hematol 79(3): 238-242. http://www.ncbi.nlm.nih.gov/pubmed/15168591.

Ivics, Z., A. Katzer, et al. (2007). "Targeted Sleeping Beauty transposition in human cells." Mol Ther\ 15\(6\): 1137-1144\. http://www.ncbi.nlm.nih.gov/pubmed/17426709\.

Johnson, C. N. and L. S. Levy (2005). "Matrix attachment regions as targets for retroviral integration." Virol J 2: 68. http://www.ncbi.nlm.nih.gov/pubmed/16111492.

Jomantiene, R., Y. Zhao, et al. (2007). "Sequence-variable mosaics: composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas." DNA Cell Biol 26(8): 557-564. http://www.ncbi.nlm.nih.gov/pubmed/17688407.

Jones, J. P., 3rd, M. N. Kierlin, et al. (2005). "Retargeting mobile group II introns to repair mutant genes." Mol Ther 11(5): 687-694. http://www.ncbi.nlm.nih.gov/pubmed/15851007.

Juranek, S. A. and H. J. Lipps (2007). "New insights into the macronuclear development in ciliates." Int Rev Cytol 262: 219-251. http://www.ncbi.nlm.nih.gov/pubmed/17631190.

Jurka, J., P. Klonowski, et al. (1998). "Mammalian retroposons integrate at kinkable DNA sites." J Biomol Struct Dyn 15(4): 717-721. http://www.ncbi.nlm.nih.gov/pubmed/9514248.

Karan, S., J. M. Frederick, et al. (2010). "Novel functions of photoreceptor guanylate cyclases revealed by targeted deletion." Mol Cell Biochem 334(1-2): 141-155. http://www.ncbi.nlm.nih.gov/pubmed/20012162.

Karberg, M., H. Guo, et al. (2001). "Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria." Nat Biotechnol 19(12): 1162-1167. http://www.ncbi.nlm.nih.gov/pubmed/11731786.

Kassis, J. A. (2002). "Pairing-sensitive silencing, polycomb group response elements, and transposon homing in Drosophila." Adv Genet 46: 421-438. http://www.ncbi.nlm.nih.gov/pubmed/11931233.

Kassis, J. A., E. Noll, et al. (1992). "Altering the insertional specificity of a Drosophila transposable element." Proc Natl Acad Sci U S A 89(5): 1919-1923. http://www.ncbi.nlm.nih.gov/pubmed/1311855.

Kauppi, L., M. Jasin, et al. (2007). "Meiotic crossover hotspots contained in haplotype block boundaries of the mouse genome." Proc Natl Acad Sci U S A 104(33): 13396-13401. http://www.ncbi.nlm.nih.gov/pubmed/17690247.

Ketting, R. F., S. E. Fischer, et al. (1997). "Target choice determinants of the Tc1 transposon of Caenorhabditis elegans." Nucleic Acids Res\ 25\(20\): 4041-4047\. http://www.ncbi.nlm.nih.gov/pubmed/9321655\.

Kim, H. J., H. J. Lee, et al. (2009). "Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly." Genome Res 19(7): 1279-1288. http://www.ncbi.nlm.nih.gov/pubmed/19470664.

Kim, J. M., S. Vanguri, et al. (1998). "Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence." Genome Res 8(5): 464-478. http://www.ncbi.nlm.nih.gov/pubmed/9582191.

Kinoshita, K. and T. Honjo (2001). "Linking class-switch recombination with somatic hypermutation." Nat Rev Mol Cell Biol 2(7): 493-503. http://www.ncbi.nlm.nih.gov/pubmed/11433363.

Kirchner, J., C. M. Connolly, et al. (1995). "Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element." Science 267(5203): 1488-1491. http://www.ncbi.nlm.nih.gov/pubmed/7878467.

Kiss, J., Z. Nagy, et al. (2007). "Transposition and target specificity of the typical IS30 family element IS1655 from Neisseria meningitidis." Mol Microbiol 63(6): 1731-1747. http://www.ncbi.nlm.nih.gov/pubmed/17367392.

Klar, A. J. (2007). "Lessons learned from studies of fission yeast mating-type switching and silencing." Annu Rev Genet 41: 213-236. http://www.ncbi.nlm.nih.gov/pubmed/17614787.

Klar, A. J., A. V. Ivanova, et al. (1998). "Multiple epigenetic events regulate mating-type switching of fission yeast." Novartis Found Symp 214: 87-99; discussion 99-103. http://www.ncbi.nlm.nih.gov/pubmed/9601013.

Kojima, K. K. and M. Kanehisa (2008). "Systematic survey for novel types of prokaryotic retroelements based on gene neighborhood and protein architecture." Mol Biol Evol 25(7): 1395-1404. http://www.ncbi.nlm.nih.gov/pubmed/18391066.

Komano, T. (1999). "Shufflons: multiple inversion systems and integrons." Annu Rev Genet 33: 171-191. http://www.ncbi.nlm.nih.gov/pubmed/10690407.

Komano, T., S. R. Kim, et al. (1994). "DNA rearrangement of the shufflon determines recipient specificity in liquid mating of IncI1 plasmid R64." J Mol Biol 243(1): 6-9. http://www.ncbi.nlm.nih.gov/pubmed/7932741.

Kordis, D. (2005). "A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses." Gene 347(2): 161-173. http://www.ncbi.nlm.nih.gov/pubmed/15777633.

Labrador, M. and V. G. Corces (2001). "Protein determinants of insertional specificity for the Drosophila gypsy retrovirus." Genetics 158(3): 1101-1110. http://www.ncbi.nlm.nih.gov/pubmed/11454759.

Labrador, M., K. Sha, et al. (2008). "Insulator and Ovo proteins determine the frequency and specificity of insertion of the gypsy retrotransposon in Drosophila melanogaster." Genetics 180(3): 1367-1378. http://www.ncbi.nlm.nih.gov/pubmed/18791225.

Lacroix, B. and V. Citovsky (2009). "Agrobacterium aiming for the host chromatin: Host and bacterial proteins involved in interactions between T-DNA and plant nucleosomes." Commun Integr Biol 2(1): 42-45. http://www.ncbi.nlm.nih.gov/pubmed/19513263.

Le Beau, M. M. (1986). "Chromosomal fragile sites and cancer-specific rearrangements." Blood 67(4): 849-858. http://www.ncbi.nlm.nih.gov/pubmed/3513870.

Lee, G. S., M. B. Neiditch, et al. (2002). "Targeted transposition by the V(D)J recombinase." Mol Cell Biol 22(7): 2068-2077. http://www.ncbi.nlm.nih.gov/pubmed/11884595.

Leem, Y. E., T. L. Ripmaster, et al. (2008). "Retrotransposon Tf1 is targeted to Pol II promoters by transcription activators." Mol Cell 30(1): 98-107. http://www.ncbi.nlm.nih.gov/pubmed/18406330.

Lepere, G., M. Betermier, et al. (2008). "Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia." Genes Dev 22(11): 1501-1512. http://www.ncbi.nlm.nih.gov/pubmed/18519642.

Levin, A., J. Rosenbluh, et al. (2010). "Integration of HIV-1 DNA is regulated by interplay between viral rev and cellular LEDGF/p75 proteins." Mol Med 16(1-2): 34-44. http://www.ncbi.nlm.nih.gov/pubmed/19855849.

Levy, A., S. Schwartz, et al. (2010). "Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements." Nucleic Acids Res 38(5): 1515-1530. http://www.ncbi.nlm.nih.gov/pubmed/20008508.

Lewinski, M. K., M. Yamashita, et al. (2006). "Retroviral DNA integration: viral and cellular determinants of target-site selection." PLoS Pathog 2(6): e60. http://www.ncbi.nlm.nih.gov/pubmed/16789841.

Li, T., S. Huang, et al. (2011). "TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain." Nucleic Acids Res 39(1): 359-372. http://www.ncbi.nlm.nih.gov/pubmed/20699274.

Lim, K. I., R. Klimczak, et al. (2010). "Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties." Proc Natl Acad Sci U S A 107(28): 12475-12480. http://www.ncbi.nlm.nih.gov/pubmed/20616052.

Linheiro, R. S. and C. M. Bergman (2008). "Testing the palindromic target site model for DNA transposon insertion using the Drosophila melanogaster P-element." Nucleic Acids Res 36(19): 6199-6208. http://www.ncbi.nlm.nih.gov/pubmed/18829720.

Liu, S., C. T. Yeh, et al. (2009). "Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome." PLoS Genet 5(11): e1000733. http://www.ncbi.nlm.nih.gov/pubmed/19936291.

Llano, M., D. T. Saenz, et al. (2006). "An essential role for LEDGF/p75 in HIV integration." Science 314(5798): 461-464. http://www.ncbi.nlm.nih.gov/pubmed/16959972.

Loot, C., C. Turlan, et al. (2004). "Host processing of branched DNA intermediates is involved in targeted transposition of IS911." Mol Microbiol 51(2): 385-393. http://www.ncbi.nlm.nih.gov/pubmed/14756780.

Mahfouz, M. M., L. Li, et al. (2011). "De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks." Proc Natl Acad Sci U S A 108(6): 2623-2628. http://www.ncbi.nlm.nih.gov/pubmed/21262818.

Martini, E. and S. Keeney (2002). "Sex and the single (double-strand) break." Mol Cell 9(4): 700-702. http://www.ncbi.nlm.nih.gov/pubmed/11983162.

Mastroianni, M., K. Watanabe, et al. (2008). "Group II intron-based gene targeting reactions in eukaryotes." PLoS One 3(9): e3121. http://www.ncbi.nlm.nih.gov/pubmed/18769669.

Mathas, S., S. Kreher, et al. (2009). "Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma." Proc Natl Acad Sci U S A 106(14): 5831-5836. http://www.ncbi.nlm.nih.gov/pubmed/19321746.

Maughan, H., L. A. Wilson, et al. (2010). "Bacterial DNA Uptake Sequences Can Accumulate by Molecular Drive Alone." Genetics 186(2): 613-627. http://www.ncbi.nlm.nih.gov/pubmed/20628039\.

Maul, R. W. and P. J. Gearhart (2010). "AID and somatic hypermutation." Adv Immunol 105: 159-191. http://www.ncbi.nlm.nih.gov/pubmed/20510733.

Maul, R. W. and P. J. Gearhart (2010). "Controlling somatic hypermutation in immunoglobulin variable and switch regions." Immunol Res 47(1-3): 113-122. http://www.ncbi.nlm.nih.gov/pubmed/20082153.

McVean, G. (2010). "What drives recombination hotspots to repeat DNA in humans?" Philos Trans R Soc Lond B Biol Sci 365(1544): 1213-1218. http://www.ncbi.nlm.nih.gov/pubmed/20308096.

Medhekar, B. and J. F. Miller (2007). "Diversity-generating retroelements." Curr Opin Microbiol 10(4): 388-395. http://www.ncbi.nlm.nih.gov/pubmed/17703991.

Mezard, C. (2006). "Meiotic recombination hotspots in plants." Biochem Soc Trans 34(Pt 4): 531-534. http://www.ncbi.nlm.nih.gov/pubmed/16856852.

Miller, J. L., J. Le Coq, et al. (2008). "Selective ligand recognition by a diversity-generating retroelement variable protein." PLoS Biol 6(6): e131. http://www.ncbi.nlm.nih.gov/pubmed/18532877.

Mitchell, R. S., B. F. Beitzel, et al. (2004). "Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences." PLoS Biol 2(8): E234. http://www.ncbi.nlm.nih.gov/pubmed/15314653.

Moalic, Y., Y. Blanchard, et al. (2006). "Porcine endogenous retrovirus integration sites in the human genome: features in common with those of murine leukemia virus." J Virol 80(22): 10980-10988. http://www.ncbi.nlm.nih.gov/pubmed/16928752.

Mohr, G., D. Smith, et al. (2000). "Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences." Genes Dev 14(5): 559-573. http://www.ncbi.nlm.nih.gov/pubmed/10716944.

Moriarty, H. T. and L. R. Webster (2003). "Fragile sites and bladder cancer." Cancer Genet Cytogenet 140(2): 89-98. http://www.ncbi.nlm.nih.gov/pubmed/12645645.

Mou, Z., A. E. Kenny, et al. (2006). "Hos2 and Set3 promote integration of Ty1 retrotransposons at tRNA genes in Saccharomyces cerevisiae." Genetics 172(4): 2157-2167. http://www.ncbi.nlm.nih.gov/pubmed/16415356.

Muller, A. E., R. G. Atkinson, et al. (2007). "Microhomologies between T-DNA ends and target sites often occur in inverted orientation and may be responsible for the high frequency of T-DNA-associated inversions." Plant Cell Rep 26(5): 617-630. http://www.ncbi.nlm.nih.gov/pubmed/17205344.

Naito, K., F. Zhang, et al. (2009). "Unexpected consequences of a sudden and massive transposon amplification on rice gene expression." Nature 461(7267): 1130-1134. http://www.ncbi.nlm.nih.gov/pubmed/19847266.

Nash, H. A. (1981). "Integration and excision of bacteriophage lambda: the mechanism of conservation site specific recombination." Annu Rev Genet 15: 143-167. http://www.ncbi.nlm.nih.gov/pubmed/6461289.

Nicolas, A. (2009). "Modulating and targeting meiotic double-strand breaks in Saccharomyces cerevisiae." Methods Mol Biol 557: 27-33. http://www.ncbi.nlm.nih.gov/pubmed/19799174.

Nishant, K. T. and M. R. Rao (2006). "Molecular features of meiotic recombination hot spots." Bioessays 28(1): 45-56. http://www.ncbi.nlm.nih.gov/pubmed/16369948.

Nnalue, N. A. (1990). "Tn7 inserts in both orientations at a single chromosomal location and apparently forms cointegrates in Pasteurella multocida." Mol Microbiol 4(1): 107-117. http://www.ncbi.nlm.nih.gov/pubmed/2157128.

Novikova, O. (2009). "Chromodomains and LTR retrotransposons in plants." Commun Integr Biol 2(2): 158-162. http://www.ncbi.nlm.nih.gov/pubmed/19513271.

Nunvar, J., T. Huckova, et al. (2010). "Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes." BMC Genomics 11(1): 44. http://www.ncbi.nlm.nih.gov/pubmed/20085626.

O'Keefe, L. V. and R. I. Richards (2006). "Common chromosomal fragile sites and cancer: focus on FRA16D." Cancer Lett 232(1): 37-47. http://www.ncbi.nlm.nih.gov/pubmed/16242840.

Odegard, V. H., S. T. Kim, et al. (2005). "Histone modifications associated with somatic hypermutation." Immunity 23(1): 101-110. http://www.ncbi.nlm.nih.gov/pubmed/16039583.

Odegard, V. H. and D. G. Schatz (2006). "Targeting of somatic hypermutation." Nat Rev Immunol 6(8): 573-583. http://www.ncbi.nlm.nih.gov/pubmed/16868548.

Paigen, K. and P. Petkov (2010). "Mammalian recombination hot spots: properties, control and evolution." Nat Rev Genet 11(3): 221-233. http://www.ncbi.nlm.nih.gov/pubmed/20168297.

Palmer, G. H., T. Bankhead, et al. (2009). "'Nothing is permanent but change'- antigenic variation in persistent bacterial pathogens." Cell Microbiol 11(12): 1697-1705. http://www.ncbi.nlm.nih.gov/pubmed/19709057.

Palmer, G. H. and K. A. Brayton (2007). "Gene conversion is a convergent strategy for pathogen antigenic variation." Trends Parasitol 23(9): 408-413. http://www.ncbi.nlm.nih.gov/pubmed/17662656.

Palmer, G. H., J. E. Futse, et al. (2006). "Insights into mechanisms of bacterial antigenic variation derived from the complete genome sequence of Anaplasma marginale." Ann N Y Acad Sci 1078: 15-25. http://www.ncbi.nlm.nih.gov/pubmed/17114676.

Pardue, M. L. and P. G. DeBaryshe (2003). "Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres." Annu Rev Genet 37: 485-511. http://www.ncbi.nlm.nih.gov/pubmed/14616071.

Parker, C., E. Becker, et al. (2005). "Elements in the co-evolution of relaxases and their origins of transfer." Plasmid 53(2): 113-118. http://www.ncbi.nlm.nih.gov/pubmed/15737398.

Parks, A. R., Z. Li, et al. (2009). "Transposition into replicating DNA occurs through interaction with the processivity factor." Cell 138(4): 685-695. http://www.ncbi.nlm.nih.gov/pubmed/19703395.

Parks, A. R. and J. E. Peters (2009). "Tn7 elements: engendering diversity from chromosomes to episomes." Plasmid 61(1): 1-14. http://www.ncbi.nlm.nih.gov/pubmed/18951916.

Parvanov, E. D., S. H. Ng, et al. (2009). "Trans-regulation of mouse meiotic recombination hotspots by Rcr1." PLoS Biol 7(2): e36. http://www.ncbi.nlm.nih.gov/pubmed/19226189.

Pelczar, P., V. Kalck, et al. (2004). "Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic T-DNA complexes in mammalian cells." EMBO Rep 5(6): 632-637. http://www.ncbi.nlm.nih.gov/pubmed/15153934.

Peters, J. E. and N. L. Craig (2000). "Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates." Mol Cell 6(3): 573-582. http://www.ncbi.nlm.nih.gov/pubmed/11030337.

Peters, J. E. and N. L. Craig (2001). "Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE." Genes Dev 15(6): 737-747. http://www.ncbi.nlm.nih.gov/pubmed/11274058.

Pichiorri, F., H. Ishii, et al. (2008). "Molecular parameters of genome instability: roles of fragile genes at common fragile sites." J Cell Biochem 104(5): 1525-1533. http://www.ncbi.nlm.nih.gov/pubmed/18393361.

Post, V. and R. M. Hall (2009). "Insertion sequences in the IS1111 family that target the attC recombination sites of integron-associated gene cassettes." FEMS Microbiol Lett 290(2): 182-187. http://www.ncbi.nlm.nih.gov/pubmed/19025573.

Preclin, V., E. Martin, et al. (2003). "Target sequences of Tc1, Tc3 and Tc5 transposons of Caenorhabditis elegans." Genet Res 82(2): 85-88. http://www.ncbi.nlm.nih.gov/pubmed/14768892.

Prescott, D. M. (2000). "Genome gymnastics: unique modes of DNA evolution and processing in ciliates." Nat Rev Genet 1(3): 191-198. http://www.ncbi.nlm.nih.gov/pubmed/11252748.

Pryce, D. W. and R. J. McFarlane (2009). "The meiotic recombination hotspots of Schizosaccharomyces pombe." Genome Dyn 5: 1-13. http://www.ncbi.nlm.nih.gov/pubmed/18948703.

Rain, J. C., A. Cribier, et al. (2009). "Yeast two-hybrid detection of integrase-host factor interactions." Methods 47(4): 291-297. http://www.ncbi.nlm.nih.gov/pubmed/19232540.

Rawal, K. and R. Ramaswamy (2011). "Genome-wide analysis of mobile genetic element insertion sites." Nucleic Acids Res 39(16): 6864-6878. http://www.ncbi.nlm.nih.gov/pubmed/21609951.

Repanas, K., N. Zingler, et al. (2007). "Determinants for DNA target structure selectivity of the human LINE-1 retrotransposon endonuclease." Nucleic Acids Res 35(14): 4914-4926. http://www.ncbi.nlm.nih.gov/pubmed/17626046.

Robart, A. R., W. Seo, et al. (2007). "Insertion of group II intron retroelements after intrinsic transcriptional terminators." Proc Natl Acad Sci U S A 104(16): 6620-6625. http://www.ncbi.nlm.nih.gov/pubmed/17420455.

Rousseau, P., C. Loot, et al. (2007). "Control of IS911 target selection: how OrfA may ensure IS dispersion." Mol Microbiol 63(6): 1701-1709. http://www.ncbi.nlm.nih.gov/pubmed/17367389.

Ruiz-Herrera, A. and T. J. Robinson (2007). "Chromosomal instability in Afrotheria: fragile sites, evolutionary breakpoints and phylogenetic inference from genome sequence assemblies." BMC Evol Biol 7: 199. http://www.ncbi.nlm.nih.gov/pubmed/17958882.

Rusche, L. N. and J. Rine (2010). "Switching the mechanism of mating type switching: a domesticated transposase supplants a domesticated homing endonuclease." Genes Dev 24(1): 10-14. http://www.ncbi.nlm.nih.gov/pubmed/20047997.

Sandrin, V., S. J. Russell, et al. (2003). "Targeting retroviral and lentiviral vectors." Curr Top Microbiol Immunol 281: 137-178. http://www.ncbi.nlm.nih.gov/pubmed/12932077.

Santoni, F. A., O. Hartley, et al. (2010). "Deciphering the code for retroviral integration target site selection." PLoS Comput Biol\ 6\(11\): e1001008\. http://www.ncbi.nlm.nih.gov/pubmed/21124862\.

Segurel, L., E. M. Leffler, et al. (2011). "The Case of the Fickle Fingers: How the PRDM9 Zinc Finger Protein Specifies Meiotic Recombination Hotspots in Humans." PLoS Biol 9(12): e1001211. http://www.ncbi.nlm.nih.gov/pubmed/22162947.

Shi, Q., A. R. Parks, et al. (2008). "DNA damage differentially activates regional chromosomal loci for Tn7 transposition in Escherichia coli." Genetics 179(3): 1237-1250. http://www.ncbi.nlm.nih.gov/pubmed/18562643.

Silverman, M., J. Zieg, et al. (1979). "Phase variation in Salmonella: genetic analysis of a recombinational switch." Proc Natl Acad Sci U S A 76(1): 391-395. http://www.ncbi.nlm.nih.gov/pubmed/370828.

Singleton, T. L. and H. L. Levin (2002). "A long terminal repeat retrotransposon of fission yeast has strong preferences for specific sites of insertion." Eukaryot Cell 1(1): 44-55. http://www.ncbi.nlm.nih.gov/pubmed/12455970.

Siol, O., M. Boutliliss, et al. (2006). "Role of RNA polymerase III transcription factors in the selection of integration sites by the dictyostelium non-long terminal repeat retrotransposon TRE5-A." Mol Cell Biol 26(22): 8242-8251. http://www.ncbi.nlm.nih.gov/pubmed/16982688.

Siol, O., T. Spaller, et al. (2011). "Genetically tagged TRE5-A retrotransposons reveal high amplification rates and authentic target site preference in the Dictyostelium discoideum genome." Nucleic Acids Res 39(15): 6608-6619. http://www.ncbi.nlm.nih.gov/pubmed/21525131.

Smagulova, F., I. V. Gregoretti, et al. (2011). "Genome-wide analysis reveals novel molecular features of mouse recombination hotspots." Nature. http://www.ncbi.nlm.nih.gov/pubmed/21460839.

Smith, D. I., S. McAvoy, et al. (2007). "Large common fragile site genes and cancer." Semin Cancer Biol\ 17\(1\): 31-41\. http://www.ncbi.nlm.nih.gov/pubmed/17140807\.

Smith, G. R. (1994). "Hotspots of homologous recombination." Experientia 50(3): 234-241. http://www.ncbi.nlm.nih.gov/pubmed/8143797.

Smith, H. O., M. L. Gwinn, et al. (1999). "DNA uptake signal sequences in naturally transformable bacteria." Res Microbiol 150(9-10): 603-616. http://www.ncbi.nlm.nih.gov/pubmed/10673000.

Sourice, S., V. Biaudet, et al. (1998). "Identification of the Chi site of Haemophilus influenzae as several sequences related to the Escherichia coli Chi site." Mol Microbiol 27(5): 1021-1029. http://www.ncbi.nlm.nih.gov/pubmed/9535091.

Spradling, A. C., D. M. Stern, et al. (1995). "Gene disruptions using P transposable elements: an integral component of the Drosophila genome project." Proc Natl Acad Sci U S A 92(24): 10824-10830. http://www.ncbi.nlm.nih.gov/pubmed/7479892.

Steiner, W. W., P. A. Davidow, et al. (2011). "Important Characteristics of Sequence-Specific Recombination Hotspots in Schizosaccharomyces pombe." Genetics 187(2): 385-396. http://www.ncbi.nlm.nih.gov/pubmed/21098718.

Steiner, W. W., E. M. Steiner, et al. (2009). "Novel nucleotide sequence motifs that produce hotspots of meiotic recombination in Schizosaccharomyces pombe." Genetics 182(2): 459-469. http://www.ncbi.nlm.nih.gov/pubmed/19363124.

Szafranski, K., G. Glockner, et al. (1999). "Non-LTR retrotransposons with unique integration preferences downstream of Dictyostelium discoideum tRNA genes." Mol Gen Genet 262(4-5): 772-780. http://www.ncbi.nlm.nih.gov/pubmed/10628860.

Szekvolgyi, L. and A. Nicolas (2010). "From meiosis to postmeiotic events: homologous recombination is obligatory but flexible." FEBS J 277(3): 571-589. http://www.ncbi.nlm.nih.gov/pubmed/20015080.

Taillebourg, E. and J. M. Dura (1999). "A novel mechanism for P element homing in Drosophila." Proc Natl Acad Sci U S A 96(12): 6856-6861. http://www.ncbi.nlm.nih.gov/pubmed/10359803.

Tanaka, A., H. M. Shen, et al. (2010). "Attracting AID to targets of somatic hypermutation." J Exp Med 207(2): 405-415. http://www.ncbi.nlm.nih.gov/pubmed/20100870.

Timakov, B., X. Liu, et al. (2002). "Timing and targeting of P-element local transposition in the male germline cells  of Drosophila melanogaster." Genetics 160(3): 1011-1022. http://www.ncbi.nlm.nih.gov/pubmed/11901118.

Tobes, R. and E. Pareja (2006). "Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements." BMC Genomics 7: 62. http://www.ncbi.nlm.nih.gov/pubmed/16563168.

Toor, N., K. Rajashankar, et al. (2008). "Structural basis for exon recognition by a group II intron." Nat Struct Mol Biol 15(11): 1221-1222. http://www.ncbi.nlm.nih.gov/pubmed/18953333.

Tsai, C. L., M. Chatterji, et al. (2003). "DNA mismatches and GC-rich motifs target transposition by the RAG1/RAG2 transposase." Nucleic Acids Res 31(21): 6180-6190. http://www.ncbi.nlm.nih.gov/pubmed/14576304.

Tsai, I. J., A. Burt, et al. (2010). "Conservation of recombination hotspots in yeast." Proc Natl Acad Sci U S A 107(17): 7847-7852. http://www.ncbi.nlm.nih.gov/pubmed/20385822.

Uchiyama, T., K. Fujino, et al. (2009). "Stable transcription activities dependent on an orientation of Tam3 transposon insertions into Antirrhinum and yeast promoters occur only within chromatin." Plant Physiol 151(3): 1557-1569. http://www.ncbi.nlm.nih.gov/pubmed/19759347.

Urnov, F. D., E. J. Rebar, et al. (2010). "Genome editing with engineered zinc finger nucleases." Nat Rev Genet 11(9): 636-646. http://www.ncbi.nlm.nih.gov/pubmed/20717154.

Van Maele, B., K. Busschots, et al. (2006). "Cellular co-factors of HIV-1 integration." Trends Biochem Sci 31(2): 98-105. http://www.ncbi.nlm.nih.gov/pubmed/16403635.

Vasquez, K. M. (2010). "Targeting and processing of site-specific DNA interstrand crosslinks." Environ Mol Mutagen 51(6): 527-539. http://www.ncbi.nlm.nih.gov/pubmed/20196133.

Voigt, K., Z. Izsvak, et al. (2008). "Targeted gene insertion for molecular medicine." J Mol Med 86(11): 1205-1219. http://www.ncbi.nlm.nih.gov/pubmed/18607557.

Wahls, W. P. and M. K. Davidson (2010). "Discrete DNA sites regulate global distribution of meiotic recombination." Trends Genet 26(5): 202-208. http://www.ncbi.nlm.nih.gov/pubmed/20381894.

Walser, J. C., B. Chen, et al. (2006). "Heat-shock promoters: targets for evolution by P transposable elements in Drosophila." PLoS Genet 2(10): e165. http://www.ncbi.nlm.nih.gov/pubmed/17029562.

Wang, Y., S. D. Goodman, et al. (2002). "Natural transformation and DNA uptake signal sequences in Actinobacillus actinomycetemcomitans." J Bacteriol 184(13): 3442-3449. http://www.ncbi.nlm.nih.gov/pubmed/12057937.

Weinthal, D., A. Tovkach, et al. (2010). "Genome editing in plant cells by zinc finger nucleases." Trends Plant Sci 15(6): 308-321. http://www.ncbi.nlm.nih.gov/pubmed/20347379.

Weng, R., Y. W. Chen, et al. (2009). "Recombinase-mediated cassette exchange provides a versatile platform for gene targeting: knockout of miR-31b." Genetics 183(1): 399-402. http://www.ncbi.nlm.nih.gov/pubmed/19564483.

Winckler, T., K. Szafranski, et al. (2005). "Transfer RNA gene-targeted integration: an adaptation of retrotransposable elements to survive in the compact Dictyostelium discoideum genome." Cytogenet Genome Res 110(1-4): 288-298. http://www.ncbi.nlm.nih.gov/pubmed/16093681.

Wolkow, C. A., R. T. DeBoy, et al. (1996). "Conjugating plasmids are preferred targets for Tn7." Genes Dev 10(17): 2145-2157. http://www.ncbi.nlm.nih.gov/pubmed/8804309.

Wu, X. and S. M. Burgess (2004). "Integration target site selection for retroviruses and transposable elements." Cell Mol Life Sci 61(19-20): 2588-2596. http://www.ncbi.nlm.nih.gov/pubmed/15526164.

Wu, X., Y. Li, et al. (2003). "Transcription start regions in the human genome are favored targets for MLV integration." Science 300(5626): 1749-1751. http://www.ncbi.nlm.nih.gov/pubmed/12805549.

Wu, Z. K., I. V. Getun, et al. (2010). "Anatomy of mouse recombination hot spots." Nucleic Acids Res 38(7): 2346-2354. http://www.ncbi.nlm.nih.gov/pubmed/20081202.

Xiang, Y. and W. T. Garrard (2008). "The Downstream Transcriptional Enhancer, Ed, positively regulates mouse Ig kappa gene expression and somatic hypermutation." J Immunol 180(10): 6725-6732. http://www.ncbi.nlm.nih.gov/pubmed/18453592.

Xie, W., X. Gai, et al. (2001). "Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p." Mol Cell Biol 21(19): 6606-6614. http://www.ncbi.nlm.nih.gov/pubmed/11533248.

Xiong, Y., W. D. Burke, et al. (1988). "Ribosomal DNA insertion elements R1Bm and R2Bm can transpose in a sequence specific manner to locations outside the 28S genes." Nucleic Acids Res 16(22): 10561-10573. http://www.ncbi.nlm.nih.gov/pubmed/2849750.

Xiong, Y. and T. H. Eickbush (1988). "The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons." Mol Cell Biol 8(1): 114-123. http://www.ncbi.nlm.nih.gov/pubmed/2447482.

Xiong, Y. E. and T. H. Eickbush (1988). "Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm." Cell 55(2): 235-246. http://www.ncbi.nlm.nih.gov/pubmed/2844414.

Yamada-Inagawa, T., A. J. Klar, et al. (2007). "Schizosaccharomyces pombe switches mating type by the synthesis-dependent strand-annealing mechanism." Genetics 177(1): 255-265. http://www.ncbi.nlm.nih.gov/pubmed/17660548.

Yang, S. Y., S. D. Fugmann, et al. (2006). "Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences." J Exp Med 203(13): 2919-2928. http://www.ncbi.nlm.nih.gov/pubmed/17178919.

Yang, S. Y. and D. G. Schatz (2007). "Targeting of AID-mediated sequence diversification by cis-acting determinants." Adv Immunol 94: 109-125. http://www.ncbi.nlm.nih.gov/pubmed/17560273.

Yao, J. and A. M. Lambowitz (2007). "Gene targeting in gram-negative bacteria by use of a mobile group II intron ("Targetron") expressed from a broad-host-range vector." Appl Environ Microbiol 73(8): 2735-2743. http://www.ncbi.nlm.nih.gov/pubmed/17322321.

Yu, B. J. and C. Kim (2008). "Minimization of the Escherichia coli genome using the Tn5-targeted Cre/loxP excision system." Methods Mol Biol 416: 261-277. http://www.ncbi.nlm.nih.gov/pubmed/18392973.

Yunis, J. J. (1987). "Multiple recurrent genomic rearrangements and fragile sites in human cancer." Somat Cell Mol Genet 13(4): 397-403. http://www.ncbi.nlm.nih.gov/pubmed/3331831.

Zhang, X. Y., R. H. Kutner, et al. (2010). "Cell-specific targeting of lentiviral vectors mediated by fusion proteins derived from Sindbis virus, vesicular stomatitis virus, or avian sarcoma/leukosis virus." Retrovirology 7: 3. http://www.ncbi.nlm.nih.gov/pubmed/20100344.

Zhang, Z. and M. H. Saier, Jr. (2009). "A mechanism of transposon-mediated directed mutation." Mol Microbiol 74(1): 29-43. http://www.ncbi.nlm.nih.gov/pubmed/19682247.

Zhang, Z., M. R. Yen, et al. (2010). "Precise excision of IS5 from the intergenic region between the fucPIK and the fucAO operons and mutational control of fucPIK operon expression in Escherichia coli." J Bacteriol 192(7): 2013-2019. http://www.ncbi.nlm.nih.gov/pubmed/20097855.

Zheng, Y., Z. Ao, et al. (2010). "Characterization of the HIV-1 integrase chromatin- and LEDGF/p75-binding abilities by mutagenic analysis within the catalytic core domain of integrase." Virol J 7: 68. http://www.ncbi.nlm.nih.gov/pubmed/20331877.

Zhong, J., M. Karberg, et al. (2003). "Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker." Nucleic Acids Res 31(6): 1656-1664. http://www.ncbi.nlm.nih.gov/pubmed/12626707.

Zhu, Y., J. Dai, et al. (2003). "Controlling integration specificity of a yeast retrotransposon." Proc Natl Acad Sci U S A 100(10): 5891-5895. http://www.ncbi.nlm.nih.gov/pubmed/12730380.

Zhu, Y., S. Zou, et al. (1998). "Tagging chromatin with retrotransposons: target specificity of the Saccharomyces Ty5 retrotransposon changes with the chromosomal localization of Sir3p and Sir4p." Genes Dev 13(20): 2738-2749. http://www.ncbi.nlm.nih.gov/pubmed/10541559.

Zhuang, F., M. Mastroianni, et al. (2009). "Linear group II intron RNAs can retrohome in eukaryotes and may use nonhomologous end-joining for cDNA ligation." Proc Natl Acad Sci U S A 106(43): 18189-18194. http://www.ncbi.nlm.nih.gov/pubmed/19833873.

Ziegler, L., L. Yang, et al. (2008). "Targeting lentiviral vectors to antigen-specific immunoglobulins." Hum Gene Ther\ 19\(9\): 861-872\. http://www.ncbi.nlm.nih.gov/pubmed/18590376\.

Zou, S., N. Ke, et al. (1996). "The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci." Genes Dev 10(5): 634-645. http://www.ncbi.nlm.nih.gov/pubmed/8598292.

Zou, S. and D. F. Voytas (1997). "Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5." Proc Natl Acad Sci U S A 94(14): 7412-7416. http://www.ncbi.nlm.nih.gov/pubmed/9207105.