The genome as a read-write (RW) storage system

(Shapiro 1982; McClintock 1984; Shapiro 1991; Shapiro 1992; Shapiro 1993; Shapiro 1994; Shapiro 1997; Bellgard, Itoh et al. 1999; Jorgensen 2004; Shapiro 2005; Shapiro 2005; Shapiro 2007; Koonin and Wolf 2008; Koonin 2009; Koonin 2009; Pigliucci 2009; Shapiro 2009; D'Onofrio and An 2010)

Mobile genetic elements and genome change

(McClintock 1950; McClintock 1953; Bukhari 1977; Cohen and Shapiro 1980; Shapiro 1983; Purugganan and Wessler 1995; DeBerardinis, Goodier et al. 1998; Shapiro 1999; Evgen'ev, Zelentsova et al. 2000; Comfort 2001; Bowen and Jordan 2002; Craig 2002; Feschotte, Jiang et al. 2002; Kidwell 2002; Deininger, Moran et al. 2003; Kazazian 2004; Miller and Capy 2004; Biemont and Vieira 2005; Feschotte and Pritham 2007; Jurka, Kapitonov et al. 2007; Pritham and Feschotte 2007; Bohne, Brunet et al. 2008; Ray, Feschotte et al. 2008; Bourque 2009; Churakov, Kriegs et al. 2009; Oliver and Greene 2009; Pritham 2009; Shapiro 2010; Jurka, Bao et al. 2011; Oliver and Greene 2011)

Reverse transcription of RNA sequences into the genome

(DeBerardinis, Goodier et al. 1998; Brosius 1999; Hiller, Hetzer et al. 2000; Betrán, Thornton et al. 2002; Brosius 2003; von Sternberg and Shapiro 2005; Kriegs, Churakov et al. 2006; Xing, Wang et al. 2006; Moller-Krull, Delsuc et al. 2007; Volff and Brosius 2007; Baertsch, Diekhans et al. 2008; Bai, Casola et al. 2008; Conley, Piriyapongsa et al. 2008; Moller-Krull, Zemann et al. 2008; Churakov, Kriegs et al. 2009; Hancks, Ewing et al. 2009; Chen, Zou et al. 2011)

Formation of novel coding sequences and genetic loci

(Wessler 1988; Wessler, Baran et al. 1988; Purugganan and Wessler 1992; Varagona, Purugganan et al. 1992; Moran, DeBerardinis et al. 1999; Hiller, Hetzer et al. 2000; Long 2001; Betrán, Thornton et al. 2002; Long, Deutsch et al. 2003; Jiang, Bao et al. 2004; Brandt, Schrauth et al. 2005; Brandt, Veith et al. 2005; Krull, Brosius et al. 2005; Britten 2006; Xing, Wang et al. 2006; Arguello, Fan et al. 2007; Babushok, Ostertag et al. 2007; Bowen and Jordan 2007; Casola, Lawing et al. 2007; Krull, Petrusma et al. 2007; Piriyapongsa, Rutledge et al. 2007; Moller-Krull, Zemann et al. 2008; Hancks, Ewing et al. 2009; Chen, Zhang et al. 2010; Fu, Chen et al. 2010)

Regulatory signals and networks written in the genome

(McClintock 1956; Britten 1996; Britten 1996; McDonald, Matyunina et al. 1997; Comfort 1999; Shapiro 1999; Comfort 2001; Shapiro 2002; Jordan, Rogozin et al. 2003; Marino-Ramirez, Lewis et al. 2005; Shapiro and Sternberg 2005; von Sternberg and Shapiro 2005; Marino-Ramirez and Jordan 2006; Istrail, De-Leon et al. 2007; Piriyapongsa, Marino-Ramirez et al. 2007; Bai, Casola et al. 2008; Bourque, Leong et al. 2008; Conley, Piriyapongsa et al. 2008; Feschotte 2008; Jurka 2008; Polavarapu, Marino-Ramirez et al. 2008; Bourque 2009; Huda and Jordan 2009; Huda, Marino-Ramirez et al. 2010; Kunarso, Chia et al. 2010; Huda, Bowen et al. 2011)

 

REFERENCES

 

Arguello, J. R., C. Fan, et al. (2007). "Origination of chimeric genes through DNA-level recombination." Genome Dyn 3: 131-146. http://www.ncbi.nlm.nih.gov/pubmed/18753789.

Babushok, D. V., E. M. Ostertag, et al. (2007). "Current topics in genome evolution: molecular mechanisms of new gene formation." Cell Mol Life Sci\ 64\(5\): 542-554\. http://www.ncbi.nlm.nih.gov/pubmed/17192808\.

Baertsch, R., M. Diekhans, et al. (2008). "Retrocopy contributions to the evolution of the human genome." BMC Genomics\ 9\: 466\. http://www.ncbi.nlm.nih.gov/pubmed/18842134\.

Bai, Y., C. Casola, et al. (2008). "Evolutionary origin of regulatory regions of retrogenes in Drosophila." BMC Genomics\ 9\: 241\. http://www.ncbi.nlm.nih.gov/pubmed/18498650\.

Bellgard, M. I., T. Itoh, et al. (1999). "Dynamic evolution of genomes and the concept of genome space." Ann N Y Acad Sci 870: 293-300. http://www.ncbi.nlm.nih.gov/pubmed/10415491.

Betrán, E., K. Thornton, et al. (2002). "Retroposed new genes out of the X in Drosophila." Genome Res 12: 1854-1859. http://www.ncbi.nlm.nih.gov/pubmed/12466289.

Biemont, C. and C. Vieira (2005). "What transposable elements tell us about genome organization and evolution: the case of Drosophila." Cytogenet Genome Res 110(1-4): 25-34. http://www.ncbi.nlm.nih.gov/pubmed/16093655.

Bohne, A., F. Brunet, et al. (2008). "Transposable elements as drivers of genomic and biological diversity in vertebrates." Chromosome Res 16(1): 203-215. http://www.ncbi.nlm.nih.gov/pubmed/18293113.

Bourque, G. (2009). "Transposable elements in gene regulation and in the evolution of vertebrate genomes." Curr Opin Genet Dev 19(6): 607-612. http://www.ncbi.nlm.nih.gov/pubmed/19914058.

Bourque, G., B. Leong, et al. (2008). "Evolution of the mammalian transcription factor binding repertoire via transposable elements." Genome Res 18(11): 1752-1762. http://www.ncbi.nlm.nih.gov/pubmed/18682548.

Bowen, N. J. and I. K. Jordan (2002). "Transposable elements and the evolution of eukaryotic complexity." Curr Issues Mol Biol 4(3): 65-76. http://www.ncbi.nlm.nih.gov/pubmed/12074196.

Bowen, N. J. and I. K. Jordan (2007). "Exaptation of protein coding sequences from transposable elements." Genome Dyn 3: 147-162. http://www.ncbi.nlm.nih.gov/pubmed/18753790.

Brandt, J., S. Schrauth, et al. (2005). "Transposable elements as a source of genetic innovation: expression and evolution of a family of retrotransposon-derived neogenes in mammals." Gene 345(1): 101-111. http://www.ncbi.nlm.nih.gov/pubmed/15716091.

Brandt, J., A. M. Veith, et al. (2005). "A family of neofunctionalized Ty3/gypsy retrotransposon genes in mammalian genomes." Cytogenet Genome Res 110(1-4): 307-317. http://www.ncbi.nlm.nih.gov/pubmed/16093683.

Britten, R. J. (1996). "Cases of ancient mobile element DNA insertions that now affect gene regulation." Mol Phylogenet Evol 5(1): 13-17. http://www.ncbi.nlm.nih.gov/pubmed/8673282.

Britten, R. J. (1996). "DNA sequence insertion and evolutionary variation in gene regulation." Proc Natl Acad Sci U S A 93(18): 9374-9377. http://www.ncbi.nlm.nih.gov/pubmed/8790336.

Britten, R. J. (2006). "Transposable elements have contributed to thousands of human proteins." Proc Nat Acad Sci USA 103(6): 1798-1803. .

Brosius, J. (1999). "RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements." Gene 238: 115–134. http://www.ncbi.nlm.nih.gov/pubmed/10570990.

Brosius, J. (2003). "The contribution of RNAs and retroposition to evolutionary novelties." Genetica 118: 99–116. .

Bukhari, A. I., J.A. Shapiro, and S. L. Adhya (Eds.) (1977). DNA insertion elements, plasmids and episomes Cold Spring Harbor, New York, Cold Spring Harbor Press. .

Casola, C., A. M. Lawing, et al. (2007). "PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes." Mol Biol Evol 24(8): 1872-1888. http://www.ncbi.nlm.nih.gov/pubmed/17556756.

Chen, M., M. Zou, et al. (2011). "Evolutionary Patterns of RNA-Based Duplication in Non-Mammalian Chordates." PLoS One 6(7): e21466. http://www.ncbi.nlm.nih.gov/pubmed/21779328.

Chen, S., Y. E. Zhang, et al. (2010). "New genes in Drosophila quickly become essential." Science 330(6011): 1682-1685. http://www.ncbi.nlm.nih.gov/pubmed/21164016.

Churakov, G., J. O. Kriegs, et al. (2009). "Mosaic retroposon insertion patterns in placental mammals." Genome Res\ 19\(5\): 868-875\. http://www.ncbi.nlm.nih.gov/pubmed/19261842\.

Cohen, S. N. and J. A. Shapiro (1980). "Transposable genetic elements." Sci Am 242(2): 40-49. http://www.ncbi.nlm.nih.gov/pubmed/6246575.

Comfort, N. C. (1999). ""The real point is control": the reception of Barbara McClintock's controlling elements." J Hist Biol 32(1): 133-162. http://www.ncbi.nlm.nih.gov/pubmed/11623812.

Comfort, N. C. (2001). "From controlling elements to transposons: Barbara McClintock and the Nobel Prize." Trends Genet 17(8): 475-478. http://www.ncbi.nlm.nih.gov/pubmed/11485821.

Conley, A. B., J. Piriyapongsa, et al. (2008). "Retroviral promoters in the human genome." Bioinformatics 24(14): 1563-1567. http://www.ncbi.nlm.nih.gov/pubmed/18535086.

Craig, N., Craigie, R, Gellert, M, Lambowitz, AM (2002). Mobile DNA II Washington, American Society for Microbiology Press. .

D'Onofrio, D. J. and G. An (2010). "A comparative approach for the investigation of biological information processing: an examination of the structure and function of computer hard drives and DNA." Theor Biol Med Model 7: 3. http://www.ncbi.nlm.nih.gov/pubmed/20092652.

DeBerardinis, R. J., J. L. Goodier, et al. (1998). "Rapid amplification of a retrotransposon subfamily is evolving the mouse genome." Nat Genet\ 20\(3\): 288-290\. http://www.ncbi.nlm.nih.gov/pubmed/9806550\.

Deininger, P. L., J. V. Moran, et al. (2003). "Mobile elements and mammalian genome evolution." Curr Opin Genet Dev 13(6): 651-658. http://www.ncbi.nlm.nih.gov/pubmed/14638329.

Evgen'ev, M. B., H. Zelentsova, et al. (2000). "Mobile elements and chromosomal evolution in the virilis group of Drosophila." Proc Natl Acad Sci U S A 97(21): 11337-11342. http://www.ncbi.nlm.nih.gov/pubmed/11016976.

Feschotte, C. (2008). "Transposable elements and the evolution of regulatory networks." Nat Rev Genet\ 9\(5\): 397-405\. http://www.ncbi.nlm.nih.gov/pubmed/18368054\.

Feschotte, C., N. Jiang, et al. (2002). "Plant transposable elements: where genetics meets genomics." Nat Rev Genet 3(5): 329-341. http://www.ncbi.nlm.nih.gov/pubmed/11988759.

Feschotte, C. and E. J. Pritham (2007). "DNA transposons and the evolution of eukaryotic genomes." Annu Rev Genet 41: 331-368. http://www.ncbi.nlm.nih.gov/pubmed/18076328.

Fu, B., M. Chen, et al. (2010). "The rapid generation of chimerical genes expanding protein diversity in zebrafish." BMC Genomics 11: 657. http://www.ncbi.nlm.nih.gov/pubmed/21106061.

Hancks, D. C., A. D. Ewing, et al. (2009). "Exon-trapping mediated by the human retrotransposon SVA." Genome Res 19(11): 1983-1991. http://www.ncbi.nlm.nih.gov/pubmed/19635844.

Hiller, R., M. Hetzer, et al. (2000). "Transposition and exon shuffling by group II intron RNA molecules in pieces." J Mol Biol 297(2): 301-308. http://www.ncbi.nlm.nih.gov/pubmed/10715202.

Huda, A., N. J. Bowen, et al. (2011). "Epigenetic regulation of transposable element derived human gene promoters." Gene 475(1): 39-48. http://www.ncbi.nlm.nih.gov/pubmed/21215797.

Huda, A. and I. K. Jordan (2009). "Epigenetic regulation of Mammalian genomes by transposable elements." Ann N Y Acad Sci 1178: 276-284. http://www.ncbi.nlm.nih.gov/pubmed/19845643.

Huda, A., L. Marino-Ramirez, et al. (2010). "Epigenetic histone modifications of human transposable elements: genome defense versus exaptation." Mob DNA 1(1): 2. http://www.ncbi.nlm.nih.gov/pubmed/20226072.

Istrail, S., S. B. De-Leon, et al. (2007). "The regulatory genome and the computer." Dev Biol 310(2): 187-195. http://www.ncbi.nlm.nih.gov/pubmed/17822690.

Jiang, N., Z. Bao, et al. (2004). "Pack-MULE transposable elements mediate gene evolution in plants." Nature 431(7008): 569-573. http://www.ncbi.nlm.nih.gov/pubmed/15457261.

Jordan, I. K., I. B. Rogozin, et al. (2003). "Origin of a substantial fraction of human regulatory sequences from transposable elements." Trends Genet 19(2): 68-72. http://www.ncbi.nlm.nih.gov/pubmed/12547512.

Jorgensen, R. A. (2004). "Restructuring the genome in response to adaptive challenge: McClintock's bold conjecture revisited." Cold Spring Harb Symp Quant Biol 69: 349-354. http://www.ncbi.nlm.nih.gov/pubmed/16117667.

Jurka, J. (2008). "Conserved eukaryotic transposable elements and the evolution of gene regulation." Cell Mol Life Sci 65(2): 201-204. http://www.ncbi.nlm.nih.gov/pubmed/18030428.

Jurka, J., W. Bao, et al. (2011). "Families of transposable elements, population structure and the origin of species." Biol Direct 6: 44. http://www.ncbi.nlm.nih.gov/pubmed/21929767.

Jurka, J., V. V. Kapitonov, et al. (2007). "Repetitive sequences in complex genomes: structure and evolution." Annu Rev Genomics Hum Genet 8: 241-259. http://www.ncbi.nlm.nih.gov/pubmed/17506661.

Kazazian, H. H., Jr. (2004). "Mobile elements: drivers of genome evolution." Science 303(5664): 1626-1632. http://www.ncbi.nlm.nih.gov/pubmed/15016989.

Kidwell, M. G. (2002). "Transposable elements and the evolution of genome size in eukaryotes." Genetica\ 115\(1\): 49-63\. http://www.ncbi.nlm.nih.gov/pubmed/12188048\.

Koonin, E. V. (2009). "Evolution of genome architecture." Int J Biochem Cell Biol 41(2): 298-306. http://www.ncbi.nlm.nih.gov/pubmed/18929678.

Koonin, E. V. (2009). "Towards a postmodern synthesis of evolutionary biology." Cell Cycle 8(6): 799-800. http://www.ncbi.nlm.nih.gov/pubmed/19242109.

Koonin, E. V. and Y. I. Wolf (2008). "Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world." Nucleic Acids Res 36(21): 6688-6719. http://www.ncbi.nlm.nih.gov/pubmed/18948295.

Kriegs, J. O., G. Churakov, et al. (2006). "Retroposed elements as archives for the evolutionary history of placental mammals." PLoS Biol 4(4): e91. http://www.ncbi.nlm.nih.gov/pubmed/16515367.

Krull, M., J. Brosius, et al. (2005). "Alu-SINE exonization: en route to protein-coding function." Mol Biol Evol 22(8): 1702-1711. http://www.ncbi.nlm.nih.gov/pubmed/15901843.

Krull, M., M. Petrusma, et al. (2007). "Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs)." Genome Res 17(8): 1139-1145. http://www.ncbi.nlm.nih.gov/pubmed/17623809.

Kunarso, G., N. Y. Chia, et al. (2010). "Transposable elements have rewired the core regulatory network of human embryonic stem cells." Nat Genet 42(7): 631-634. http://www.ncbi.nlm.nih.gov/pubmed/20526341.

Long, M. (2001). "Evolution of novel genes." Curr Opin Genet Dev 11(6): 673-680. .

Long, M., M. Deutsch, et al. (2003). "Origin of new genes: evidence from experimental and computational analyses." Genetica\ 118\(2-3\): 171-182\. http://www.ncbi.nlm.nih.gov/pubmed/12868607\.

Marino-Ramirez, L. and I. K. Jordan (2006). "Transposable element derived DNaseI-hypersensitive sites in the human genome." Biol Direct 1: 20. http://www.ncbi.nlm.nih.gov/pubmed/16857058.

Marino-Ramirez, L., K. C. Lewis, et al. (2005). "Transposable elements donate lineage-specific regulatory sequences to host genomes." Cytogenet Genome Res 110(1-4): 333-341. http://www.ncbi.nlm.nih.gov/pubmed/16093685.

McClintock, B. (1950). "The origin and behavior of mutable loci in maize." Proc Natl Acad Sci U S A 36(6): 344-355. http://www.ncbi.nlm.nih.gov/pubmed/15430309.

McClintock, B. (1953). "Induction of Instability at Selected Loci in Maize." Genetics 38(6): 579-599. http://www.ncbi.nlm.nih.gov/pubmed/17247459.

McClintock, B. (1956). "Intranuclear systems controlling gene action and mutation." Brookhaven Symp Biol(8): 58-74. http://www.ncbi.nlm.nih.gov/pubmed/13293421.

McClintock, B. (1984). "The significance of responses of the genome to challenge." Science 226(4676): 792-801. http://www.ncbi.nlm.nih.gov/pubmed/15739260.

McDonald, J. F., L. V. Matyunina, et al. (1997). "LTR retrotransposons and the evolution of eukaryotic enhancers." Genetica 100(1-3): 3-13. http://www.ncbi.nlm.nih.gov/pubmed/9440254.

Miller, W. J. and P. Capy (2004). "Mobile genetic elements as natural tools for genome evolution." Methods Mol Biol 260: 1-20. http://www.ncbi.nlm.nih.gov/pubmed/15020798.

Moller-Krull, M., F. Delsuc, et al. (2007). "Retroposed elements and their flanking regions resolve the evolutionary history of xenarthran mammals (armadillos, anteaters, and sloths)." Mol Biol Evol 24(11): 2573-2582. http://www.ncbi.nlm.nih.gov/pubmed/17884827.

Moller-Krull, M., A. Zemann, et al. (2008). "Beyond DNA: RNA editing and steps toward Alu exonization in primates." J Mol Biol 382(3): 601-609. http://www.ncbi.nlm.nih.gov/pubmed/18680752.

Moran, J. V., R. J. DeBerardinis, et al. (1999). "Exon shuffling by L1 retrotransposition." Science 283(5407): 1530-1534. http://www.ncbi.nlm.nih.gov/pubmed/10066175.

Oliver, K. R. and W. K. Greene (2009). "Transposable elements: powerful facilitators of evolution." Bioessays 31(7): 703-714. http://www.ncbi.nlm.nih.gov/pubmed/19415638.

Oliver, K. R. and W. K. Greene (2011). "Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates." Mob DNA 2(1): 8. http://www.ncbi.nlm.nih.gov/pubmed/21627776.

Pigliucci, M. (2009). "An extended synthesis for evolutionary biology." Ann N Y Acad Sci 1168: 218-228. http://www.ncbi.nlm.nih.gov/pubmed/19566710.

Piriyapongsa, J., L. Marino-Ramirez, et al. (2007). "Origin and evolution of human microRNAs from transposable elements." Genetics 176(2): 1323-1337. http://www.ncbi.nlm.nih.gov/pubmed/17435244.

Piriyapongsa, J., M. T. Rutledge, et al. (2007). "Evaluating the protein coding potential of exonized transposable element sequences." Biol Direct 2: 31. http://www.ncbi.nlm.nih.gov/pubmed/18036258.

Polavarapu, N., L. Marino-Ramirez, et al. (2008). "Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA." BMC Genomics 9: 226. http://www.ncbi.nlm.nih.gov/pubmed/18485226.

Pritham, E. J. (2009). "Transposable elements and factors influencing their success in eukaryotes." J Hered 100(5): 648-655. http://www.ncbi.nlm.nih.gov/pubmed/19666747.

Pritham, E. J. and C. Feschotte (2007). "Massive amplification of rolling-circle transposons in the lineage of the bat\ Myotis lucifugus." Proc Natl Acad Sci U S A\ 104\(6\): 1895-1900\. http://www.ncbi.nlm.nih.gov/pubmed/17261799\.

Purugganan, M. and S. Wessler (1992). "The splicing of transposable elements and its role in intron evolution." Genetica 86(1-3): 295-303. http://www.ncbi.nlm.nih.gov/pubmed/1334914.

Purugganan, M. D. and S. R. Wessler (1995). "Transposon signatures: species-specific molecular markers that utilize a class of multiple-copy nuclear DNA." Mol Ecol 4(2): 265-269. http://www.ncbi.nlm.nih.gov/pubmed/7735530.

Ray, D. A., C. Feschotte, et al. (2008). "Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus." Genome Res 18(5): 717-728. http://www.ncbi.nlm.nih.gov/pubmed/18340040.

Shapiro, J. A. (1982). "Changes in gene order and gene expression." Natl Cancer Inst Monogr 60: 87-110. http://www.ncbi.nlm.nih.gov/pubmed/6289110.

Shapiro, J. A. (1983). Mobile Genetic Elements. New York, Academic Press. .

Shapiro, J. A. (1991). "Genomes as smart systems." Genetica 84(1): 3-4. http://www.ncbi.nlm.nih.gov/pubmed/1874439.

Shapiro, J. A. (1992). "Natural genetic engineering in evolution." Genetica 86(1-3): 99-111. http://www.ncbi.nlm.nih.gov/pubmed/1334920.

Shapiro, J. A. (1993). "Natural genetic engineering of the bacterial genome." Curr Opin Genet Dev\ 3\(6\): 845-848\. http://www.ncbi.nlm.nih.gov/pubmed/8118208\.

Shapiro, J. A. (1994). "Adaptive mutation." Science 265(5181): 1994-1995; author reply 1995-1996. http://www.ncbi.nlm.nih.gov/pubmed/7993484.

Shapiro, J. A. (1997). "Genome organization, natural genetic engineering and adaptive mutation." Trends Genet 13(3): 98-104. http://www.ncbi.nlm.nih.gov/pubmed/9066268.

Shapiro, J. A. (1999). "Genome system architecture and natural genetic engineering in evolution." Ann N Y Acad Sci 870: 23-35. http://www.ncbi.nlm.nih.gov/pubmed/10415470.

Shapiro, J. A. (1999). "Transposable elements as the key to a 21st century view of evolution." Genetica 107(1-3): 171-179. http://www.ncbi.nlm.nih.gov/pubmed/10952210.

Shapiro, J. A. (2002). "Genome organization and reorganization in evolution: formatting for computation and function." Ann N Y Acad Sci 981: 111-134. http://www.ncbi.nlm.nih.gov/pubmed/12547677.

Shapiro, J. A. (2005). "A 21st century view of evolution: genome system architecture, repetitive DNA, and natural genetic engineering." Gene 345(1): 91-100. http://www.ncbi.nlm.nih.gov/pubmed/15716117.

Shapiro, J. A. (2005). "Retrotransposons and regulatory suites." Bioessays 27(2): 122-125. http://www.ncbi.nlm.nih.gov/pubmed/15666350.

Shapiro, J. A. (2007). "Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology." Stud Hist Philos Biol Biomed Sci 38(4): 807-819. http://www.ncbi.nlm.nih.gov/pubmed/18053935.

Shapiro, J. A. (2009). "Letting Escherichia coli teach me about genome engineering." Genetics 183(4): 1205-1214. http://www.ncbi.nlm.nih.gov/pubmed/19996374.

Shapiro, J. A. (2010). "Mobile DNA and evolution in the 21st century." Mob DNA 1(1): 4. http://www.ncbi.nlm.nih.gov/pubmed/20226073.

Shapiro, J. A. and R. v. Sternberg (2005). "Why repetitive DNA is essential to genome function." Biol. Revs. (Camb.) 80: 227-250. http://www.ncbi.nlm.nih.gov/pubmed/15921050.

Varagona, M. J., M. Purugganan, et al. (1992). "Alternative splicing induced by insertion of retrotransposons into the maize waxy gene." Plant Cell 4(7): 811-820. http://www.ncbi.nlm.nih.gov/pubmed/1327340.

Volff, J. N. and J. Brosius (2007). "Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes." Genome Dyn 3: 175-190. http://www.ncbi.nlm.nih.gov/pubmed/18753792.

von Sternberg, R. and J. A. Shapiro (2005). "How repeated retroelements format genome function." Cytogenet Genome Res 110(1-4): 108-116. http://www.ncbi.nlm.nih.gov/pubmed/16093662.

Wessler, S. R. (1988). "Phenotypic diversity mediated by the maize transposable elements Ac and Spm." Science 242(4877): 399-405. http://www.ncbi.nlm.nih.gov/pubmed/2845581.

Wessler, S. R., G. Baran, et al. (1988). "Alterations in gene expression mediated by DNA insertions in the waxy gene of maize." Basic Life Sci 47: 293-303. http://www.ncbi.nlm.nih.gov/pubmed/2845914.

Xing, J., H. Wang, et al. (2006). "Emergence of primate genes by retrotransposon-mediated sequence transduction." Proc Natl Acad Sci U S A 103(47): 17608-17613. http://www.ncbi.nlm.nih.gov/pubmed/17101974.