Ecological Factors that Induce Mutagenic DNA Repair or Modulate NGE Responses

Ecological Factor and NGE Effect

Affected Organism

References

Growth conditions and cellular differentiation

Stationary phase mutagenesis regulated by ComA and ComK

B. subtilis

(Sung and Yasbin 2002)

Anaerobic growth enhances point mutations, produces different spectrum

E. coli

(Shewaramani, Finn et al. 2017)

Aging colonies, mutational hotspots, retromutation (8-oxo-guanosine, formed exclusively on the transcribed strand)

E. coli

(Sekowska, Wendel et al. 2016) (Saint-Ruf, Garfa-Traore et al. 2014)

Nutrient-dependent mutability

E. coli mutator strains

(Tsuru, Ishizawa et al. 2015) (Ishizawa, Ying et al. 2015)

Adaptive selection-induced retromutation (damage only to transcribed DNA strand)

E. coli

(Morreall, Kim et al. 2015)

Cystic Fibrosis lung growth induces hypermutability

P. aeruginosa

(Rodriguez-Rojas, Oliver et al. 2012)

Phosphorus/carbon limitation increase point mutations, iron/oxygen/carbon limitation increase IS150 insertions, phosphorus limitation increases indels

E. coli

(Maharjan and Ferenci 2017) (Maharjan and Ferenci 2015)

Adenine starvation stimulates Ty1 retrotransposition

Yeast Saccharomyces cerevisaea

(Servant, Pinson et al. 2012)

APOBEC kataegis on actively transcribed loci

Yeast Saccharomyces cerevisaea

(Lada, Kliver et al. 2015)

Glucose- or phosphate-limited growth produced frequent genomic amplifications, rearrangements and novel retrotransposition.

Yeast Saccharomyces cerevisiae

(Gresham, Desai et al. 2008)

“Starvation leads to genome restructuring. By contrast, the frequency of point mutations is less than 2-fold greater.”

Yeast Saccharomyces cerevisiae

(Kroll, Coyle et al. 2013)

Nitrogen starvation increases copy number variations (CNVs)

Yeast Saccharomyces cerevisiae

(Hong and Gresham 2014)

Domestication leads to increase in repetitive DNA and retrotransposons

Maize

(Liu, Zheng et al. 2017)

Early embryogenesis activates mPing DNA transposition

Rice

(Teramoto, Tsukiyama et al. 2014)

Plant regeneration activates chromovirus LORE1 (ERV) retrotransposition

Model legume Lotus japonicus

(Fukai, Umehara et al. 2010)

Neural differentiation activates L1 retrotransposition.

Rodents, humans

(Richardson, Morell et al. 2014)

Aging induces retrotransposition (effect counter-acted by calorie restriction)

Mouse germline and somatic tissue

(De Cecco, Criscione et al. 2013)

Early embryonic development displays a mutator state for copy number variation (CNV) of genomic duplications

Humans

(Liu, Yuan et al. 2017)

Abiotic stresses

UV irradiation stimulates hypermutation

Pseudomonas aeruginosa

(Weigand and Sundin 2012)

Oxidative stress induce DNA transposon non-allelic homolgous recombination (NAHR)

Burkholderia cenocepacia

(Drevinek, Baldwin et al. 2010)

Cis-platin treatment hypermutation

Yeast mutants, rad1, rad2 S. cerevisaea

(Segovia, Shen et al. 2017)

Copper induces expansion and contraction of CUP1 arrays encoding copper-binding protein (copy number variation, CNV)

Budding yeast Saccharomyces cerevisaea

(Hull, Cruz et al. 2017)

Heat shock, oxidative and copper sulphate stresses activate LTR-retrotransposons Pyret and MAGGY, DNA transposons Pot3, MINE, Mg-SINE, Grasshopper and MGLR3

Fungal pathogen Magnaporthe oryzae

(Chadha and Sharma 2014)

Mild heat stress and UV activate mariner-Mos1 transposition

Drosophila simulans

(Jardim, Schuch et al. 2015)

Sun exposure increases somatic mutations

Skin fibroblasts

(Saini, Roberts et al. 2016) (Abyzov, Tomasini et al. 2017)

Uranium induces alternative NHEJ DSB repair processes

Embryonic zebrafish cells

(Pereira, Camilleri et al. 2012)

“Two mechanisms … of cadmium mutagenicity: (i) induction of reactive oxygen species (ROS); and (ii) inhibition of DNA repair.”

Various mammalian experimental systems

(Filipic, Fatur et al. 2006)

Arsenic, vanadium, iron induce VL30 retrotransposition

Mouse NIH3T3 cells

(Markopoulos, Noutsopoulos et al. 2013) (Noutsopoulos, Markopoulos et al. 2007) (Konisti, Mantziou et al. 2012)

“Environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals” activate mobile DNA elements.

Humans

(Miousse, Chalbot et al. 2015)

Mercury induces LINE1 retrotransposition

Human neuroblastoma cell line

(Habibi, Shokrgozar et al. 2014)

Heavy metals affect DSB repair: low doses of NiCl2 favored homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses.

Human U2OS osteosarcoma cell lines

(Morales, Derbes et al. 2016)

Low doses of NiCl2 and CdCl2 contributed to an increase in mutagenic deletions by Alu-Alu NAHR…cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ) while inhibiting repair by HR.

Human HEK 293 cells

(Morales, Derbes et al. 2016)

Etomoxir, WY-14643, and salicylamide (genotoxic drugs), Aluminum, low-level As2O3 induce LINE1 retrotransposition; copper treatment downregulated L1 retrotransposition.

Human HepG2 cells

(Terasaki, Goodier et al. 2013) (Karimi, Madjd et al. 2014) (Karimi, Madjd et al. 2014)

Exposure to cadmium chloride and cadmium diacetate inhibits NHEJ and activates MRE11-dependent repair

Human endothelial cells

(Viau, Gastaldo et al. 2008)

Heat stress activates ONSEN, COPIA retrotransposition

Brassicaceae

(Ito, Yoshida et al. 2013) (Ito, Kim et al. 2016; Masuta, Nozawa et al. 2016; Pietzenuk, Markus et al. 2016)

Heat stress activates ONSEN retrotransposition

Arabidopsis

(Matsunaga, Ohama et al. 2015) (Cavrak, Lettner et al. 2014)

Climate affects DNA transposon and retrotransposon activity

Arabidopsis

(Quadrana, Bortolini Silveira et al. 2016) (Ito and Kakutani 2014)

Cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells

Trinucleotide repeat mutagenesis in humans

(Chatterjee, Lin et al. 2015) (Chatterjee, Lin et al. 2016)

Microsatellite mutation rate is significantly greater at 26°C than at 18°C

C. elegans

(Matsuba, Ostrow et al. 2013)

Hyper salinity, stressed lineages accumulate 100% more mutations, and these mutations exhibit a distinctive molecular mutational spectrum (specific increases in relative frequency of transversion and insertion/deletion {indel} mutations).

A. thaliana

(Jiang, Mithani et al. 2014)

Nitric oxide modulator, sodium nitroprusside induces Tos17 LTR retrotransposition.

Rice

(Ou, Zhuang et al. 2015)

Laser irradiation stimulates DNA methylation changes and mPing DNA transposition

Rice

(Li, Xia et al. 2017)

Fungicides boscalid (respiration inhibitor), iprodione (unclear mode of action), thiophanate methyl (inhibition of microtubulin synthesis) and azoxystrobin and pyraclostrobin (quinone outside inhibitors) raised mutation rates 1.7- to 60-fold compared to neutral conditions. 

Plant pathogen Sclerotinia sclerotiorum

(Amaradasa and Everhart 2016)

Biotic stresses and biomolecules

Ethanol stress induces transient hypermutator state

E. coli

(Swings, Van den Bergh et al. 2017)

Food additive sepiolite stimulates antibiotic resistance plasmid transfer

E. coli, S. Typhimurium, M. smegmatis, and P. aeruginosa

(Rodriguez-Beltran, Rodriguez-Rojas et al. 2013)

Joint action of LL-37 (antimicrobial peptide) and free iron induces mutagenesis

P. aeruginosa

(Rodriguez-Rojas, Makarova et al. 2014)

Antibiotics induce SOS response and conjugal DNA transfer

V. cholera

(Baharoglu, Bikard et al. 2010; Baharoglu and Mazel 2011; Baharoglu, Krin et al. 2013; Gutierrez, Laureti et al. 2013)

Fluoroquinolone and norfloxacin antibiotics induced point mutations, IS1 non-allelic homologous recombination (NAHR) deletions, IS5 NAHR duplications (but not transpositions)

E. coli

(Long, Miller et al. 2016)

Beta-lactam antibiotics induced RpoS-dependent mutagenesis

E. coli

(Gutierrez, Laureti et al. 2013)

Ciprofloxacin enhanced mutability

E. coli

 (Jee, Rasouly et al. 2016) (Song, Goff et al. 2016) (Kohanski, DePristo et al. 2010)

Subinhibitory ciprofloxacin, SOS response

Pseudomonas aeruginosa

(Valencia, Esposito et al. 2017; Zaborskyte, Andersen et al. 2017)

Subinhibitory concentrations of ciprofloxacin and vancomycin activate IS256 transposition, induce SOS response; also chloramphenicol and spectinomycin

Staphylococcus aureus

(Nagel, Reuter et al. 2011; Schreiber, Szekat et al. 2013)

Antibiotic selection induces genomic duplications

E. coli

(Laehnemann, Pena-Miller et al. 2014)

Tigecycline induces hypermutation

Acinetobacter baumannii

(Hammerstrom, Beabout et al. 2015)

Cationic antimicrobial peptide human cathelicidin LL-37 induces mutagenesis in CF lungs

P. aeruginosa

(Limoli, Rockel et al. 2014)

Canavanine proteotoxic stress induces mutagenesis

Yeast S. cerevisaea

(Shor, Fox et al. 2013)

Cyclo(phenylalanine-proline) produced by animals, plants, bacteria and fungi... such as Lactobacillus reuteri, Streptomyces sp. AMLK335, Vibrio vulnificus, V. cholera, Pseudomonas aeruginosa and P. putida; induces phosphorylation of H2AX (S139) through ATM-CHK2 activation as well as DNA double strand breaks. Gene expression analysis revealed that cyclo(phenylalanine-proline) repressed a subset of genes related to reactive oxygen species (ROS) scavenging.

Human INT407, U2OS and Huh7 cells

(Lee, Jeong et al. 2015)

Chlamydia trachomatis infection produces

8-oxo-dG, DSBs

Human cervical, ovarian cells

(Chumduri, Gurumurthy et al. 2016)

N. gonorrhea gonococcal infection causes DNA strand breaks, abolished expression of p53 and increased in expression of cyclin-dependent kinase inhibitors p21 and p27

Human non-tumor vaginal VK2/E6E7 cells

(Vielfort, Soderholm et al. 2013)

H.  pylori infection is mutagenic/carcinogenic; CagA, VacA, γGT, urease, NapA proteins induce 8-oxo-G, 8-oxo-dG, AP sites, and DSBs in host DNA, mutagenic DNA damage response

Human gastric cells

(Touati 2010) (Hanada, Uchida et al. 2014) (Toller, Neelsen et al. 2011) (Chumduri, Gurumurthy et al. 2016)

 

Helicobacter pylori impairs DNA mismatch repair

Human gastric epithelial cells

(Kim, Tao et al. 2002)

Haemophilus ducreyi CDT (HdCDT) DNAse genotoxin induces phosphorylation of the histone H2AX as early as 1 h after intoxication and re-localization of the DNA repair complex Mre11 in HeLa cells with kinetics similar to those observed upon ionizing radiation.

HeLa cells

(Li, Sharipo et al. 2002)

Campylobacter jejuni, Haemophilus ducreyi, Actinobacillus actinomycetemcomitans, Shigella dysenteriae, Helicobacter cinaedi, Helicobacter hepaticus, Salmonella species CDT and CDT-like typhoid toxins induce DSBs and SSBs

Human gastric cells

(Chumduri, Gurumurthy et al. 2016)

 

Shigella strains, E. coli strains - Shiga toxin (RNA N-glycosidase) produces apurinic sites, SSBs, DSBs

Human cells

(Chumduri, Gurumurthy et al. 2016)

 

Chlamydia trachomatis infection induces DNA DSB damage and inhibits recruitment of the DDR proteins pATM and 53BP1 to damage sites

Human cells

(Chumduri, Gurumurthy et al. 2013)

E. coli harboring “pks” genomic island that codes for polyketide-peptide genotoxin, Colibactin {DNA cross-linking agent}.…pks(+) E. coli induce transient DNA damage response, incomplete DNA repair, anaphase bridges and chromosome aberrations from breakage-fusion-bridge cycles and chromosomal instability. Exposed cells exhibited a significant increase in 6-thioguanine–resistant (hprt mutant) colonies and a significant increase of tk mutants selected with trifluorothymidine.

Cultured mouse intestinal loop epithelial cells

(Cuevas-Ramos, Petit et al. 2010) (Vizcaino and Crawford 2015)

Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Citrobacter koseri colibactin genotoxin induces genome instability

Human colorectal cells

(Chumduri, Gurumurthy et al. 2016)

Neisseria gonorrhoeae, Neisseria meningitides restriction endonuclease produces 8-oxo-G, DSBs

Human prostate cells

(Chumduri, Gurumurthy et al. 2016)

E. coli depletes host cell DNA mismatch repair (MMR) proteins

Human colonic cell lines

(Maddocks, Scanlon et al. 2013)

P. aeruginosa ExoS bacterial toxin is major factor involved in γH2AX induction… infection by P. aeruginosa activates the DSB repair machinery of the host cells.

Human immune or lung epithelial cells

(Elsen, Collin-Faure et al. 2013) (Wu, Huang et al. 2011)

Listeria monocytogenes induces DSBs but dampens host DSB response through degradation of MRE11 exonuclease via bacterial factor LLO (pore-forming toxin listeriolysin O)

Human HeLa (CCL-2) and Jeg-3 (HTB-36) cell lines

(Samba-Louaka, Pereira et al. 2014) (Leitao, Costa et al. 2014)

P. syringae pathovar tomato infection induces DSB formation in Arabidopsis… abundance of infection-induced DSBs reduced by salicylic acid

Arabidopsis

(Song and Bent 2014)

Attack by the oomycete pathogen Peronospora parasitica stimulates somatic recombination

Arabidopsis

(Lucht, Mauch-Mani et al. 2002)

Tobacco mosaic virus (TMV) or oilseed rape mosaic virus (ORMV) tobacco leaf infection resulted in a systemic increase in homologous recombination (HR)…a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV.

Arabidopsis, tobacco

(Yao, Kathiria et al. 2013)

DNA damage response induced by infection with human cytomegalovirus

Human cells

(Xiaofei and Kowalik 2014)

Human T-cell lymphotropic virus 1 (HTLV-1) retrovirus infection causes genome instability and DNA damage, attenuation of BER, NER, MMR, HR, NHEJ repair pathways, generation of ROS

Human T-cells

(Ryan, Hollingworth et al. 2016)

Hepatitis C virus (HCV) infection produces ROS and NO, reduced MMR, BER and NER, modulation of ATM pathway activity

Human cells

(Ryan, Hollingworth et al. 2016)

Zika virus infection leads to P53 activation and genotoxic stress

Human neural progenitor cells

(Ghouzzi, Bianchi et al. 2016)

Bs1 Transposition detected in maize lines following barley stripe mosaic virus infection

Zea mays

(Grandbastien 2015)

Physiological stress, induced by climate change or invasion of new habitats, disrupts epigenetic regulation and activates mobile DNA elements

Diverse organisms

(Garcia Guerreiro, Chavez-Sandoval et al. 2008) (Garcia Guerreiro 2012) (Negi, Rai et al. 2016)

 

 

REFERENCES

 

Abyzov, A., L. Tomasini, et al. (2017). "One thousand somatic SNVs per skin fibroblast cell set baseline of mosaic mutational load with patterns that suggest proliferative origin." Genome Res 27(4): 512-523. http://www.ncbi.nlm.nih.gov/pubmed/28235832.

Amaradasa, B. S. and S. E. Everhart (2016). "Effects of Sublethal Fungicides on Mutation Rates and Genomic Variation in Fungal Plant Pathogen, Sclerotinia sclerotiorum." PLoS One 11(12): e0168079. http://www.ncbi.nlm.nih.gov/pubmed/27959950.

Baharoglu, Z., D. Bikard, et al. (2010). "Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation." PLoS Genet 6(10): e1001165. http://www.ncbi.nlm.nih.gov/pubmed/20975940.

Baharoglu, Z., E. Krin, et al. (2013). "RpoS Plays a Central Role in the SOS Induction by Sub-Lethal Aminoglycoside Concentrations in Vibrio cholerae." PLoS Genet 9(4): e1003421. http://www.ncbi.nlm.nih.gov/pubmed/23613664.

Baharoglu, Z. and D. Mazel (2011). "Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: a route towards multiresistance." Antimicrob Agents Chemother 55(5): 2438-2441. http://www.ncbi.nlm.nih.gov/pubmed/21300836.

Cavrak, V. V., N. Lettner, et al. (2014). "How a retrotransposon exploits the plant's heat stress response for its activation." PLoS Genet 10(1): e1004115. http://www.ncbi.nlm.nih.gov/pubmed/24497839.

Chadha, S. and M. Sharma (2014). "Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae." PLoS One 9(4): e94415. http://www.ncbi.nlm.nih.gov/pubmed/24709911.

Chatterjee, N., Y. Lin, et al. (2015). "Environmental stress induces trinucleotide repeat mutagenesis in human cells." Proc Natl Acad Sci U S A. http://www.ncbi.nlm.nih.gov/pubmed/25775519.

Chatterjee, N., Y. Lin, et al. (2016). "Environmental Stress Induces Trinucleotide Repeat Mutagenesis in Human Cells by Alt-Nonhomologous End Joining Repair." J Mol Biol 428(15): 2978-2980. http://www.ncbi.nlm.nih.gov/pubmed/27318194.

Chumduri, C., R. K. Gurumurthy, et al. (2013). "Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response." Cell Host Microbe 13(6): 746-758. http://www.ncbi.nlm.nih.gov/pubmed/23768498.

Chumduri, C., R. K. Gurumurthy, et al. (2016). "Subversion of host genome integrity by bacterial pathogens." Nat Rev Mol Cell Biol. http://www.ncbi.nlm.nih.gov/pubmed/27534801.

Cuevas-Ramos, G., C. R. Petit, et al. (2010). "Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells." Proc Natl Acad Sci U S A 107(25): 11537-11542. http://www.ncbi.nlm.nih.gov/pubmed/20534522.

De Cecco, M., S. W. Criscione, et al. (2013). "Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues." Aging (Albany NY) 5(12): 867-883. http://www.ncbi.nlm.nih.gov/pubmed/24323947.

Drevinek, P., A. Baldwin, et al. (2010). "Oxidative stress of Burkholderia cenocepacia induces insertion sequence-mediated genomic rearrangements that interfere with macrorestriction-based genotyping." J Clin Microbiol 48(1): 34-40. http://www.ncbi.nlm.nih.gov/pubmed/19889907.

Elsen, S., V. Collin-Faure, et al. (2013). "The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells." Cell Mol Life Sci 70(22): 4385-4397. http://www.ncbi.nlm.nih.gov/pubmed/23760206.

Filipic, M., T. Fatur, et al. (2006). "Molecular mechanisms of cadmium induced mutagenicity." Hum Exp Toxicol 25(2): 67-77. http://www.ncbi.nlm.nih.gov/pubmed/16539211.

Fukai, E., Y. Umehara, et al. (2010). "Derepression of the plant Chromovirus LORE1 induces germline transposition in regenerated plants." PLoS Genet 6(3): e1000868. .

Garcia Guerreiro, M. P. (2012). "What makes transposable elements move in the Drosophila genome?" Heredity (Edinb) 108(5): 461-468. http://www.ncbi.nlm.nih.gov/pubmed/21971178.

Garcia Guerreiro, M. P., B. E. Chavez-Sandoval, et al. (2008). "Distribution of the transposable elements bilbo and gypsy in original and colonizing populations of Drosophila subobscura." BMC Evol Biol 8: 234. http://www.ncbi.nlm.nih.gov/pubmed/18702820.

Ghouzzi, V. E., F. T. Bianchi, et al. (2016). "ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly and p53." Cell Death Dis 7(10): e2440. http://www.ncbi.nlm.nih.gov/pubmed/27787521.

Grandbastien, M. A. (2015). "LTR retrotransposons, handy hitchhikers of plant regulation and stress response." Biochim Biophys Acta 1849(4): 403-416. http://www.ncbi.nlm.nih.gov/pubmed/25086340.

Gresham, D., M. M. Desai, et al. (2008). "The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast." PLoS Genet 4(12): e1000303. http://www.ncbi.nlm.nih.gov/pubmed/19079573.

Gutierrez, A., L. Laureti, et al. (2013). "beta-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity." Nat Commun 4: 1610. http://www.ncbi.nlm.nih.gov/pubmed/23511474.

Habibi, L., M. A. Shokrgozar, et al. (2014). "Mercury specifically induces LINE-1 activity in a human neuroblastoma cell line." Mutat Res Genet Toxicol Environ Mutagen 759: 9-20. http://www.ncbi.nlm.nih.gov/pubmed/24240092.

Hammerstrom, T. G., K. Beabout, et al. (2015). "Acinetobacter baumannii Repeatedly Evolves a Hypermutator Phenotype in Response to Tigecycline That Effectively Surveys Evolutionary Trajectories to Resistance." PLoS One 10(10): e0140489. http://www.ncbi.nlm.nih.gov/pubmed/26488727.

Hanada, K., T. Uchida, et al. (2014). "Helicobacter pylori infection introduces DNA double-strand breaks in host cells." Infect Immun 82(10): 4182-4189. http://www.ncbi.nlm.nih.gov/pubmed/25069978.

Hong, J. and D. Gresham (2014). "Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments." PLoS Genet 10(1): e1004041. http://www.ncbi.nlm.nih.gov/pubmed/24415948.

Hull, R. M., C. Cruz, et al. (2017). "Environmental change drives accelerated adaptation through stimulated copy number variation." PLoS Biol 15(6): e2001333. http://www.ncbi.nlm.nih.gov/pubmed/28654659.

Ishizawa, Y., B. W. Ying, et al. (2015). "Nutrient-dependent growth defects and mutability of mutators in Escherichia coli." Genes Cells 20(1): 68-76. http://www.ncbi.nlm.nih.gov/pubmed/25378049.

Ito, H. and T. Kakutani (2014). "Control of transposable elements in Arabidopsis thaliana." Chromosome Res 22(2): 217-223. http://www.ncbi.nlm.nih.gov/pubmed/24801341.

Ito, H., J. M. Kim, et al. (2016). "A Stress-Activated Transposon in Arabidopsis Induces Transgenerational Abscisic Acid Insensitivity." Sci Rep 6: 23181. http://www.ncbi.nlm.nih.gov/pubmed/26976262.

Ito, H., T. Yoshida, et al. (2013). "Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae." Gene 518(2): 256-261. http://www.ncbi.nlm.nih.gov/pubmed/23370337.

Jardim, S. S., A. P. Schuch, et al. (2015). "Effects of heat and UV radiation on the mobilization of transposon mariner-Mos1." Cell Stress Chaperones 20(5): 843-851. http://www.ncbi.nlm.nih.gov/pubmed/26092118.

Jee, J., A. Rasouly, et al. (2016). "Rates and mechanisms of bacterial mutagenesis from maximum-depth sequencing." Nature 534(7609): 693-696. http://www.ncbi.nlm.nih.gov/pubmed/27338792.

Jiang, C., A. Mithani, et al. (2014). "Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations." Genome Res 24(11): 1821-1829. http://www.ncbi.nlm.nih.gov/pubmed/25314969.

Karimi, A., Z. Madjd, et al. (2014). "Evaluating the extent of LINE-1 mobility following exposure to heavy metals in HepG2 cells." Biol Trace Elem Res 160(1): 143-151. http://www.ncbi.nlm.nih.gov/pubmed/24894828.

Karimi, A., Z. Madjd, et al. (2014). "Exposure of hepatocellular carcinoma cells to low-level As(2)O(3) causes an extra toxicity pathway via L1 retrotransposition induction." Toxicol Lett 229(1): 111-117. http://www.ncbi.nlm.nih.gov/pubmed/24960058.

Kim, J. J., H. Tao, et al. (2002). "Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells." Gastroenterology 123(2): 542-553. http://www.ncbi.nlm.nih.gov/pubmed/12145807.

Kohanski, M. A., M. A. DePristo, et al. (2010). "Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis." Mol Cell 37(3): 311-320. http://www.ncbi.nlm.nih.gov/pubmed/20159551.

Konisti, S., S. Mantziou, et al. (2012). "H2O2 signals via iron induction of VL30 retrotransposition correlated with cytotoxicity." Free Radic Biol Med 52(10): 2072-2081. http://www.ncbi.nlm.nih.gov/pubmed/22542446.

Kroll, E., S. Coyle, et al. (2013). "Starvation-associated genome restructuring can lead to reproductive isolation in yeast." PLoS One 8(7): e66414. http://www.ncbi.nlm.nih.gov/pubmed/23894280.

Lada, A. G., S. F. Kliver, et al. (2015). "Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes." PLoS Genet 11(5): e1005217. http://www.ncbi.nlm.nih.gov/pubmed/25941824.

Laehnemann, D., R. Pena-Miller, et al. (2014). "Genomics of rapid adaptation to antibiotics: convergent evolution and scalable sequence amplification." Genome Biol Evol 6(6): 1287-1301. http://www.ncbi.nlm.nih.gov/pubmed/24850796.

Lee, K., J. E. Jeong, et al. (2015). "Cyclo(phenylalanine-proline) induces DNA damage in mammalian cells via reactive oxygen species." J Cell Mol Med 19(12): 2851-2864. http://www.ncbi.nlm.nih.gov/pubmed/26416514.

Leitao, E., A. C. Costa, et al. (2014). "Listeria monocytogenes induces host DNA damage and delays the host cell cycle to promote infection." Cell Cycle 13(6): 928-940. http://www.ncbi.nlm.nih.gov/pubmed/24552813.

Li, L., A. Sharipo, et al. (2002). "The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells." Cell Microbiol 4(2): 87-99. http://www.ncbi.nlm.nih.gov/pubmed/11896765.

Li, S., Q. Xia, et al. (2017). "Laser Irradiation-Induced DNA Methylation Changes Are Heritable and Accompanied with Transpositional Activation of mPing in Rice." Front Plant Sci 8: 363. http://www.ncbi.nlm.nih.gov/pubmed/28377781.

Limoli, D. H., A. B. Rockel, et al. (2014). "Cationic antimicrobial peptides promote microbial mutagenesis and pathoadaptation in chronic infections." PLoS Pathog 10(4): e1004083. http://www.ncbi.nlm.nih.gov/pubmed/24763694.

Liu, P., B. Yuan, et al. (2017). "An Organismal CNV Mutator Phenotype Restricted to Early Human Development." Cell 168(5): 830-842 e837. http://www.ncbi.nlm.nih.gov/pubmed/28235197.

Liu, S., J. Zheng, et al. (2017). "Unbiased K-mer Analysis Reveals Changes in Copy Number of Highly Repetitive Sequences During Maize Domestication and Improvement." Sci Rep 7: 42444. http://www.ncbi.nlm.nih.gov/pubmed/28186206.

Long, H., S. F. Miller, et al. (2016). "Antibiotic treatment enhances the genome-wide mutation rate of target cells." Proc Natl Acad Sci U S A. http://www.ncbi.nlm.nih.gov/pubmed/27091991.

Lucht, J. M., B. Mauch-Mani, et al. (2002). "Pathogen stress increases somatic recombination frequency in Arabidopsis." Nat Genet 30(3): 311-314. http://www.ncbi.nlm.nih.gov/pubmed/11836502.

Maddocks, O. D., K. M. Scanlon, et al. (2013). "An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins." MBio 4(3): e00152-00113. http://www.ncbi.nlm.nih.gov/pubmed/23781066.

Maharjan, R. and T. Ferenci (2015). "Mutational signatures indicative of environmental stress in bacteria." Mol Biol Evol 32(2): 380-391. http://www.ncbi.nlm.nih.gov/pubmed/25389207.

Maharjan, R. P. and T. Ferenci (2017). "A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input-mutation output relationships." PLoS Biol 15(6): e2001477. http://www.ncbi.nlm.nih.gov/pubmed/28594817.

Markopoulos, G., D. Noutsopoulos, et al. (2013). "Arsenic induces VL30 retrotransposition: the involvement of oxidative stress and heat-shock protein 70." Toxicol Sci 134(2): 312-322. http://www.ncbi.nlm.nih.gov/pubmed/23708403.

Masuta, Y., K. Nozawa, et al. (2016). "Inducible Transposition of a Heat-Activated Retrotransposon in Tissue Culture." Plant Cell Physiol. http://www.ncbi.nlm.nih.gov/pubmed/28013279.

Matsuba, C., D. G. Ostrow, et al. (2013). "Temperature, stress and spontaneous mutation in Caenorhabditis briggsae and Caenorhabditis elegans." Biol Lett 9(1): 20120334. http://www.ncbi.nlm.nih.gov/pubmed/22875817.

Matsunaga, W., N. Ohama, et al. (2015). "A small RNA mediated regulation of a stress-activated retrotransposon and the tissue specific transposition during the reproductive period in Arabidopsis." Front Plant Sci 6: 48. http://www.ncbi.nlm.nih.gov/pubmed/25709612.

Miousse, I. R., M. C. Chalbot, et al. (2015). "Response of transposable elements to environmental stressors." Mutat Res Rev Mutat Res 765: 19-39. http://www.ncbi.nlm.nih.gov/pubmed/26281766.

Morales, M. E., R. S. Derbes, et al. (2016). "Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes." PLoS One 11(3): e0151367. http://www.ncbi.nlm.nih.gov/pubmed/26966913.

Morreall, J., A. Kim, et al. (2015). "Evidence for Retromutagenesis as a Mechanism for Adaptive Mutation in Escherichia coli." PLoS Genet 11(8): e1005477. http://www.ncbi.nlm.nih.gov/pubmed/26305558.

Nagel, M., T. Reuter, et al. (2011). "Influence of ciprofloxacin and vancomycin on mutation rate and transposition of IS256 in Staphylococcus aureus." Int J Med Microbiol 301(3): 229-236. http://www.ncbi.nlm.nih.gov/pubmed/21115395.

Negi, P., A. N. Rai, et al. (2016). "Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response." Front Plant Sci 7: 1448. http://www.ncbi.nlm.nih.gov/pubmed/27777577.

Noutsopoulos, D., G. Markopoulos, et al. (2007). "Vanadium induces VL30 retrotransposition at an unusually high level: a possible carcinogenesis mechanism." J Mol Biol 374(1): 80-90. http://www.ncbi.nlm.nih.gov/pubmed/17920077.

Ou, X., T. Zhuang, et al. (2015). "DNA methylation changes induced in rice by exposure to high concentrations of the nitric oxide modulator, sodium nitroprusside." Plant Mol. Biol. Rep. 33: 1428–1440. .

Pereira, S., V. Camilleri, et al. (2012). "Genotoxicity of uranium contamination in embryonic zebrafish cells." Aquat Toxicol 109: 11-16. http://www.ncbi.nlm.nih.gov/pubmed/22204984.

Pietzenuk, B., C. Markus, et al. (2016). "Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements." Genome Biol 17(1): 209. http://www.ncbi.nlm.nih.gov/pubmed/27729060.

Quadrana, L., A. Bortolini Silveira, et al. (2016). "The Arabidopsis thaliana mobilome and its impact at the species level." Elife 5. http://www.ncbi.nlm.nih.gov/pubmed/27258693.

Richardson, S. R., S. Morell, et al. (2014). "L1 retrotransposons and somatic mosaicism in the brain." Annu Rev Genet 48: 1-27. http://www.ncbi.nlm.nih.gov/pubmed/25036377.

Rodriguez-Beltran, J., A. Rodriguez-Rojas, et al. (2013). "The animal food supplement sepiolite promotes a direct horizontal transfer of antibiotic resistance plasmids between bacterial species." Antimicrob Agents Chemother 57(6): 2651-2653. http://www.ncbi.nlm.nih.gov/pubmed/23529735.

Rodriguez-Rojas, A., O. Makarova, et al. (2014). "Antimicrobials, stress and mutagenesis." PLoS Pathog 10(10): e1004445. http://www.ncbi.nlm.nih.gov/pubmed/25299705.

Rodriguez-Rojas, A., A. Oliver, et al. (2012). "Intrinsic and environmental mutagenesis drive diversification and persistence of Pseudomonas aeruginosa in chronic lung infections." J Infect Dis 205(1): 121-127. http://www.ncbi.nlm.nih.gov/pubmed/22080096.

Ryan, E. L., R. Hollingworth, et al. (2016). "Activation of the DNA Damage Response by RNA Viruses." Biomolecules 6(1): 2. http://www.ncbi.nlm.nih.gov/pubmed/26751489.

Saini, N., S. A. Roberts, et al. (2016). "The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts." PLoS Genet 12(10): e1006385. http://www.ncbi.nlm.nih.gov/pubmed/27788131.

Saint-Ruf, C., M. Garfa-Traore, et al. (2014). "Massive diversification in aging colonies of Escherichia coli." J Bacteriol 196(17): 3059-3073. http://www.ncbi.nlm.nih.gov/pubmed/24982303.

Samba-Louaka, A., J. M. Pereira, et al. (2014). "Listeria monocytogenes dampens the DNA damage response." PLoS Pathog 10(10): e1004470. http://www.ncbi.nlm.nih.gov/pubmed/25340842.

Schreiber, F., C. Szekat, et al. (2013). "Antibiotic-induced autoactivation of IS256 in Staphylococcus aureus." Antimicrob Agents Chemother 57(12): 6381-6384. http://www.ncbi.nlm.nih.gov/pubmed/24080654.

Segovia, R., Y. Shen, et al. (2017). "Hypermutation signature reveals a slippage and realignment model of translesion synthesis by Rev3 polymerase in cisplatin-treated yeast." Proc Natl Acad Sci U S A 114(10): 2663-2668. http://www.ncbi.nlm.nih.gov/pubmed/28223526.

Sekowska, A., S. Wendel, et al. (2016). "Generation of mutation hotspots in ageing bacterial colonies." Sci Rep 6(1): 2. http://www.ncbi.nlm.nih.gov/pubmed/28442761.

Servant, G., B. Pinson, et al. (2012). "Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress." Nucleic Acids Res 40(12): 5271-5282. http://www.ncbi.nlm.nih.gov/pubmed/22379133.

Shewaramani, S., T. J. Finn, et al. (2017). "Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra." PLoS Genet 13(1): e1006570. http://www.ncbi.nlm.nih.gov/pubmed/28103245.

Shor, E., C. A. Fox, et al. (2013). "The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress." PLoS Genet 9(8): e1003680. http://www.ncbi.nlm.nih.gov/pubmed/23935537.

Song, J. and A. F. Bent (2014). "Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses." PLoS Pathog 10(4): e1004030. http://www.ncbi.nlm.nih.gov/pubmed/24699527.

Song, L. Y., M. Goff, et al. (2016). "Mutational Consequences of Ciprofloxacin in Escherichia coli." Antimicrob Agents Chemother 60(10): 6165-6172. http://www.ncbi.nlm.nih.gov/pubmed/27480851.

Sung, H. M. and R. E. Yasbin (2002). "Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis." J Bacteriol 184(20): 5641-5653. http://www.ncbi.nlm.nih.gov/pubmed/12270822.

Swings, T., B. Van den Bergh, et al. (2017). "Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli." Elife 6. http://www.ncbi.nlm.nih.gov/pubmed/28460660.

Teramoto, S., T. Tsukiyama, et al. (2014). "Early embryogenesis-specific expression of the rice transposon Ping enhances amplification of the MITE mPing." PLoS Genet 10(6): e1004396. http://www.ncbi.nlm.nih.gov/pubmed/24921928.

Terasaki, N., J. L. Goodier, et al. (2013). "In vitro screening for compounds that enhance human L1 mobilization." PLoS One 8(9): e74629. http://www.ncbi.nlm.nih.gov/pubmed/24040300.

Toller, I. M., K. J. Neelsen, et al. (2011). "Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells." Proc Natl Acad Sci U S A 108(36): 14944-14949. http://www.ncbi.nlm.nih.gov/pubmed/21896770.

Touati, E. (2010). "When bacteria become mutagenic and carcinogenic: lessons from H. pylori." Mutat Res 703(1): 66-70. http://www.ncbi.nlm.nih.gov/pubmed/20709622.

Tsuru, S., Y. Ishizawa, et al. (2015). "Genomic confirmation of nutrient-dependent mutability of mutators in Escherichia coli." Genes Cells 20(12): 972-981. http://www.ncbi.nlm.nih.gov/pubmed/26414389.

Valencia, E. Y., F. Esposito, et al. (2017). "Ciprofloxacin-Mediated Mutagenesis Is Suppressed by Subinhibitory Concentrations of Amikacin in Pseudomonas aeruginosa." Antimicrob Agents Chemother 61(3). http://www.ncbi.nlm.nih.gov/pubmed/28031197.

Viau, M., J. Gastaldo, et al. (2008). "Cadmium inhibits non-homologous end-joining and over-activates the MRE11-dependent repair pathway." Mutat Res 654(1): 13-21. http://www.ncbi.nlm.nih.gov/pubmed/18539077.

Vielfort, K., N. Soderholm, et al. (2013). "Neisseria gonorrhoeae infection causes DNA damage and affects the expression of p21, p27 and p53 in non-tumor epithelial cells." J Cell Sci 126(Pt 1): 339-347. http://www.ncbi.nlm.nih.gov/pubmed/23108670.

Vizcaino, M. I. and J. M. Crawford (2015). "The colibactin warhead crosslinks DNA." Nat Chem 7(5): 411-417. http://www.ncbi.nlm.nih.gov/pubmed/25901819.

Weigand, M. R. and G. W. Sundin (2012). "General and inducible hypermutation facilitate parallel adaptation in Pseudomonas aeruginosa despite divergent mutation spectra." Proc Natl Acad Sci U S A 109(34): 13680-13685. http://www.ncbi.nlm.nih.gov/pubmed/22869726.

Wu, M., H. Huang, et al. (2011). "Host DNA repair proteins in response to Pseudomonas aeruginosa in lung epithelial cells and in mice." Infect Immun 79(1): 75-87. http://www.ncbi.nlm.nih.gov/pubmed/20956573.

Xiaofei, E. and T. F. Kowalik (2014). "The DNA damage response induced by infection with human cytomegalovirus and other viruses." Viruses 6(5): 2155-2185. http://www.ncbi.nlm.nih.gov/pubmed/24859341.

Yao, Y., P. Kathiria, et al. (2013). "A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication." Front Plant Sci 4: 61. http://www.ncbi.nlm.nih.gov/pubmed/23519399.

Zaborskyte, G., J. B. Andersen, et al. (2017). "Real-Time Monitoring of nfxB Mutant Occurrence and Dynamics in Pseudomonas aeruginosa Biofilm Exposed to Subinhibitory Concentrations of Ciprofloxacin." Antimicrob Agents Chemother 61(3). http://www.ncbi.nlm.nih.gov/pubmed/27993856.