REFERENCES
Alioto, T., K. G. Alexiou, et al.
(2020).
"Transposons played a major role in the diversification between
the
closely related almond and peach genomes: results from the
almond genome
sequence." Plant J 101(2):
455-472. https://pubmed.ncbi.nlm.nih.gov/31529539/
Barbaglia, A. M., K. M. Klusman, et al.
(2012).
"Gene capture by Helitron transposons reshuffles the
transcriptome of
maize." Genetics 190(3):
965-975.
https://pubmed.ncbi.nlm.nih.gov/22174072/
Batista, R. A., J. Moreno-Romero, et
al. (2019).
"The MADS-box transcription factor PHERES1 controls imprinting
in the
endosperm by binding to domesticated transposons." Elife
8. https://pubmed.ncbi.nlm.nih.gov/31789592/
Baud, A., M. Wan, et al. (2020).
"Traces of
transposable elements in genome dark matter coopted by flowering
gene
regulation networks " BioRxiv. /
Bejerano, G., C. B. Lowe, et al.
(2006). "A
distal enhancer and an ultraconserved exon are derived from a
novel
retroposon." Nature 441(7089):
87-90. https://pubmed.ncbi.nlm.nih.gov/16625209/
Bennetzen, J. L. and H. Wang (2014).
"The
contributions of transposable elements to the structure,
function, and
evolution of plant genomes." Annu Rev Plant Biol 65: 505-530. https://pubmed.ncbi.nlm.nih.gov/24579996/
Bringaud, F., M. Muller, et al. (2007).
"Members
of a large retroposon family are determinants of
post-transcriptional gene
expression in Leishmania." PLoS Pathog 3(9): 1291-1307. https://pubmed.ncbi.nlm.nih.gov/17907803/
Cao, C., J. Xu, et al. (2016).
"Evidence for the
role of transposons in the recruitment of cis-regulatory motifs
during the
evolution of C4 photosynthesis." BMC Genomics 17(1): 201. https://pubmed.ncbi.nlm.nih.gov/26955946/
Carotti, E., F. Carducci, et al.
(2021).
"Transposable Elements and Teleost Migratory Behaviour." Int
J Mol
Sci 22(2). https://pubmed.ncbi.nlm.nih.gov/33435333/
Castanera, R., L. Lopez-Varas, et al.
(2016).
"Transposable Elements versus the Fungal Genome: Impact on
Whole-Genome
Architecture and Transcriptional Profiles." PLoS Genet 12(6): e1006108. https://pubmed.ncbi.nlm.nih.gov/27294409/
Chen, C., W. Wang, et al. (2019).
"Retrotransposons evolution and impact on lncRNA and protein
coding genes
in pigs." Mob DNA 10:
19. https://pubmed.ncbi.nlm.nih.gov/31080521/
Chishima, T., J. Iwakiri, et al.
(2018).
"Identification of Transposable Elements Contributing to
Tissue-Specific
Expression of Long Non-Coding RNAs." Genes (Basel) 9(1). https://pubmed.ncbi.nlm.nih.gov/29315213/
Chuong, E. B. (2013). "Retroviruses
facilitate
the rapid evolution of the mammalian placenta." Bioessays
35(10): 853-861. https://pubmed.ncbi.nlm.nih.gov/23873343/
Chuong, E. B. (2018). "The placenta
goes viral:
Retroviruses control gene expression in pregnancy." PLoS
Biol 16(10):
e3000028. https://pubmed.ncbi.nlm.nih.gov/30300353/
Chuong, E. B., N. C. Elde, et al.
(2016).
"Regulatory evolution of innate immunity through co-option of
endogenous
retroviruses." Science 351(6277):
1083-1087. https://pubmed.ncbi.nlm.nih.gov/26941318/
Chuong, E. B. and C. Feschotte (2013).
"Evolution. Transposons up the dosage." Science 342(6160): 812-813. https://pubmed.ncbi.nlm.nih.gov/24233714/
Chuong, E. B., M. A. Rumi, et al.
(2013).
"Endogenous retroviruses function as species-specific enhancer
elements in
the placenta." Nat Genet 45(3):
325-329. https://pubmed.ncbi.nlm.nih.gov/23396136/
Cosby, R. L., J. Judd, et al. (2021).
"Recurrent
evolution of vertebrate transcription factors by transposase
capture." Science
371(6531). https://pubmed.ncbi.nlm.nih.gov/33602827/
Cui, F., M. V. Sirotin, et al. (2011).
"Impact of
Alu repeats on the evolution of human p53 binding sites." Biol
Direct
6(1): 2. https://pubmed.ncbi.nlm.nih.gov/21208455/
del Rosario, R. C., N. A. Rayan, et al.
(2014).
"Noncoding origins of anthropoid traits and a new null model of
transposon
functionalization." Genome Res 24(9):
1469-1484. https://pubmed.ncbi.nlm.nih.gov/25043600/
Dunn-Fletcher, C. E., L. M. Muglia, et
al. (2018).
"Anthropoid primate-specific retroviral element THE1B controls
expression
of CRH in placenta and alters gestation length." PLoS Biol
16(9): e2006337. https://pubmed.ncbi.nlm.nih.gov/30231016/
Elisaphenko, E. A., N. N. Kolesnikov,
et al. (2008).
"A dual origin of the Xist gene from a protein-coding gene and a
set of
transposable elements." PLoS One 3(6): e2521. https://pubmed.ncbi.nlm.nih.gov/18575625/
Ellison, C. and D. Bachtrog (2019).
"Recurrent
gene co-amplification on Drosophila X and Y chromosomes." PLoS
Genet
15(7): e1008251. https://pubmed.ncbi.nlm.nih.gov/31329593/
Ellison, C. E. and D. Bachtrog (2013).
"Dosage
compensation via transposable element mediated rewiring of a
regulatory
network." Science 342(6160):
846-850. https://pubmed.ncbi.nlm.nih.gov/24233721/
Emera, D., C. Casola, et al. (2012).
"Convergent
evolution of endometrial prolactin expression in primates, mice,
and elephants
through the independent recruitment of transposable elements." Mol
Biol
Evol 29(1):
239-247. https://pubmed.ncbi.nlm.nih.gov/21813467/
Etchegaray, E., M. Naville, et al.
(2021).
"Transposable element-derived sequences in vertebrate
development." Mob
DNA 12(1): 1.
https://pubmed.ncbi.nlm.nih.gov/33407840/
Ferrari, R., N. Grandi, et al. (2021).
"Retrotransposons as Drivers of Mammalian Brain Evolution." Life
(Basel) 11(5).
https://pubmed.ncbi.nlm.nih.gov/33922141/
Frank, J. A. and C. Feschotte (2017).
"Co-option
of endogenous viral sequences for host cell function." Curr
Opin Virol
25: 81-89. https://pubmed.ncbi.nlm.nih.gov/28818736/
Fu, B., H. Ma, et al. (2019).
"Endogenous
Retroviruses Function as Gene Expression Regulatory Elements
During Mammalian
Pre-implantation Embryo Development." Int J Mol Sci 20(3). https://pubmed.ncbi.nlm.nih.gov/30759824/
Fu, H., W. Zhang, et al. (2021).
"Elevated
retrotransposon activity and genomic instability in primed
pluripotent stem
cells." Genome Biol 22(1):
201. https://pubmed.ncbi.nlm.nih.gov/34243810/
Grow, E. J., R. A. Flynn, et al.
(2015).
"Intrinsic retroviral reactivation in human preimplantation
embryos and
pluripotent cells." Nature 522(7555):
221-225. https://pubmed.ncbi.nlm.nih.gov/25896322/
Hirakawa, M., H. Nishihara, et al.
(2009).
"Characterization and evolutionary landscape of AmnSINE1 in
Amniota
genomes." Gene 441(1-2):
100-110.
https://pubmed.ncbi.nlm.nih.gov/19166919/
Hou, J., D. Lu, et al. (2019).
"Non-coding RNAs
and transposable elements in plant genomes: emergence,
regulatory mechanisms
and roles in plant development and stress responses." Planta
250(1): 23-40. https://pubmed.ncbi.nlm.nih.gov/30993403/
Huda, A., N. J. Bowen, et al. (2011).
"Epigenetic
regulation of transposable element derived human gene
promoters." Gene
475(1): 39-48. https://pubmed.ncbi.nlm.nih.gov/21215797/
Huda, A., E. Tyagi, et al. (2011).
"Prediction of
transposable element derived enhancers using chromatin
modification
profiles." PLoS One 6(11):
e27513. https://pubmed.ncbi.nlm.nih.gov/22087331/
Izsvak, Z., J. Wang, et al. (2016).
"Pluripotency
and the endogenous retrovirus HERVH: Conflict or serendipity?" Bioessays
38(1): 109-117. https://pubmed.ncbi.nlm.nih.gov/26735931/
Jacques, P. E., J. Jeyakani, et al.
(2013). "The
majority of primate-specific regulatory sequences are derived
from transposable
elements." PLoS Genet 9(5):
e1003504. https://pubmed.ncbi.nlm.nih.gov/23675311/
Jjingo, D., A. Huda, et al. (2011).
"Effect of
the transposable element environment of human genes on gene
length and
expression." Genome Biol Evol 3:
259-271. https://pubmed.ncbi.nlm.nih.gov/21362639/
Joly-Lopez, Z., E. Forczek, et al.
(2017).
"Abiotic Stress Phenotypes Are Associated with Conserved Genes
Derived
from Transposable Elements." Front Plant Sci 8: 2027. https://pubmed.ncbi.nlm.nih.gov/29250089/
Joly-Lopez, Z., D. R. Hoen, et al.
(2016).
"Phylogenetic and Genomic Analyses Resolve the Origin of
Important Plant
Genes Derived from Transposable Elements." Mol Biol Evol
33(8): 1937-1956. https://pubmed.ncbi.nlm.nih.gov/27189548/
Jouffroy, O., S. Saha, et al. (2016).
"Comprehensive repeatome annotation reveals strong potential
impact of
repetitive elements on tomato ripening." BMC Genomics 17(1): 624. https://pubmed.ncbi.nlm.nih.gov/27519651/
Kannan, S., D. Chernikova, et al.
(2015).
"Transposable Element Insertions in Long Intergenic Non-Coding
RNA
Genes." Front Bioeng Biotechnol 3: 71. https://pubmed.ncbi.nlm.nih.gov/26106594/
Kunarso, G., N. Y. Chia, et al. (2010).
"Transposable elements have rewired the core regulatory network
of human
embryonic stem cells." Nat Genet 42(7): 631-634. https://pubmed.ncbi.nlm.nih.gov/20526341/
Lapp, H. E. and R. G. Hunter (2016).
"The dynamic
genome: transposons and environmental adaptation in the nervous
system." Epigenomics
8(2): 237-249. https://pubmed.ncbi.nlm.nih.gov/26791965/
Lennartsson, A., E. Arner, et al.
(2015).
"Remodeling of retrotransposon elements during epigenetic
induction of
adult visual cortical plasticity by HDAC inhibitors." Epigenetics
Chromatin 8:
55. https://pubmed.ncbi.nlm.nih.gov/26673794/
Lisch, D. and J. L. Bennetzen (2011).
"Transposable element origins of epigenetic gene regulation." Curr
Opin
Plant Biol 14(2):
156-161. https://pubmed.ncbi.nlm.nih.gov/21444239/
Liu, M. and M. V. Eiden (2011). "Role
of human
endogenous retroviral long terminal repeats (LTRs) in
maintaining the integrity
of the human germ line." Viruses 3(6): 901-905. https://pubmed.ncbi.nlm.nih.gov/21994760/
Lopes, F. R., D. Jjingo, et al. (2013).
"Transcriptional activity, chromosomal distribution and
expression effects
of transposable elements in coffea genomes." PLoS One 8(11): e78931. https://pubmed.ncbi.nlm.nih.gov/24244387/
Lu, X., F. Sachs, et al. (2014). "The
retrovirus
HERVH is a long noncoding RNA required for human embryonic stem
cell
identity." Nat Struct Mol Biol. https://pubmed.ncbi.nlm.nih.gov/24681886/
Lv, Y., F. Hu, et al. (2019). "Maize
transposable
elements contribute to long non-coding RNAs that are regulatory
hubs for
abiotic stress response." BMC Genomics 20(1): 864. https://pubmed.ncbi.nlm.nih.gov/31729949/
Lynch, V. J., R. D. Leclerc, et al.
(2011).
"Transposon-mediated rewiring of gene regulatory networks
contributed to
the evolution of pregnancy in mammals." Nat Genet 43(11): 1154-1159. https://pubmed.ncbi.nlm.nih.gov/21946353/
Lynch, V. J., M. C. Nnamani, et al.
(2015).
"Ancient transposable elements transformed the uterine
regulatory
landscape and transcriptome during the evolution of mammalian
pregnancy." Cell
Rep 10(4):
551-561. https://pubmed.ncbi.nlm.nih.gov/25640180/
Lyon, M. F. (2000). "LINE-1 elements
and X
chromosome inactivation: a function for "junk" DNA?" Proc
Natl Acad Sci U S A 97(12):
6248-6249. https://pubmed.ncbi.nlm.nih.gov/10841528/
Lyon, M. F. (2003). "The Lyon and the
LINE
hypothesis." Semin Cell Dev Biol 14(6): 313-318. https://pubmed.ncbi.nlm.nih.gov/15015738/
Maezawa, S., A. Sakashita, et al.
(2020).
"Super-enhancer switching drives a burst in gene expression at
the
mitosis-to-meiosis transition." Nat Struct Mol Biol 27(10): 978-988. https://pubmed.ncbi.nlm.nih.gov/32895557/
Makarevitch, I., A. J. Waters, et al.
(2015).
"Transposable elements contribute to activation of maize genes
in response
to abiotic stress." PLoS Genet 11(1):
e1004915. https://pubmed.ncbi.nlm.nih.gov/25569788/
Maumus, F., A. E. Allen, et al. (2009).
"Potential
impact of stress activated retrotransposons on genome evolution
in a marine
diatom." BMC Genomics 10:
624. https://pubmed.ncbi.nlm.nih.gov/20028555/
McEwen, G. K., D. K. Goode, et al.
(2009). "Early
evolution of conserved regulatory sequences associated with
development in
vertebrates." PLoS Genet 5(12):
e1000762. https://pubmed.ncbi.nlm.nih.gov/20011110/
Micale, L., M. N. Loviglio, et al.
(2012). "A
fish-specific transposable element shapes the repertoire of p53
target genes in
zebrafish." PLoS One 7(10):
e46642. https://pubmed.ncbi.nlm.nih.gov/23118857/
Mikkelsen, T. S., M. J. Wakefield, et
al. (2007).
"Genome of the marsupial Monodelphis domestica reveals
innovation in
non-coding sequences." Nature 447(7141):
167-177. https://pubmed.ncbi.nlm.nih.gov/17495919/
Muino, J. M., S. de Bruijn, et al.
(2016).
"Evolution of DNA-Binding Sites of a Floral Master Regulatory
Transcription Factor." Mol Biol Evol 33(1): 185-200. https://pubmed.ncbi.nlm.nih.gov/26429922/
Mulholland, C. B., A. Nishiyama, et al.
(2020).
"Recent evolution of a TET-controlled and DPPA3/STELLA-driven
pathway of
passive DNA demethylation in mammals." Nat Commun 11(1): 5972. https://pubmed.ncbi.nlm.nih.gov/33235224/
Nakanishi, A., N. Kobayashi, et al.
(2012). "A
SINE-derived element constitutes a unique modular enhancer for
mammalian
diencephalic Fgf8." PLoS One 7(8):
e43785. https://pubmed.ncbi.nlm.nih.gov/22937095/
Negi, P., A. N. Rai, et al. (2016).
"Moving
through the Stressed Genome: Emerging Regulatory Roles for
Transposons in Plant
Stress Response." Front Plant Sci 7: 1448. https://pubmed.ncbi.nlm.nih.gov/27777577/
Nishihara, H. (2019). "Retrotransposons
spread
potential cis-regulatory elements during mammary gland
evolution." Nucleic
Acids Res 47(22):
11551-11562. https://pubmed.ncbi.nlm.nih.gov/31642473/
Nishihara, H. (2020). "Transposable
elements as
genetic accelerators of evolution: contribution to genome size,
gene regulatory
network rewiring and morphological innovation." Genes Genet
Syst 94(6):
269-281. https://pubmed.ncbi.nlm.nih.gov/31932541/
Nishihara, H., N. Kobayashi, et al.
(2016).
"Coordinately Co-opted Multiple Transposable Elements Constitute
an
Enhancer for wnt5a Expression in the Mammalian Secondary
Palate." PLoS
Genet 12(10):
e1006380. https://pubmed.ncbi.nlm.nih.gov/27741242/
Notwell, J. H., T. Chung, et al.
(2015). "A
family of transposable elements co-opted into developmental
enhancers in the
mouse neocortex." Nat Commun 6:
6644. https://pubmed.ncbi.nlm.nih.gov/25806706/
Okada, N., T. Sasaki, et al. (2010).
"Emergence
of mammals by emergency: exaptation." Genes Cells 15(8): 801-812. https://pubmed.ncbi.nlm.nih.gov/20633052/
Oliver, M. J., O. Schofield, et al.
(2010).
"Density dependent expression of a diatom retrotransposon." Mar
Genomics 3(3-4):
145-150. https://pubmed.ncbi.nlm.nih.gov/21798208/
Piskurek, O. and D. J. Jackson (2012).
"Transposable elements: from DNA parasites to architects of
metazoan
evolution." Genes (Basel) 3(3):
409-422. https://pubmed.ncbi.nlm.nih.gov/24704977/
Policarpi, C., L. Crepaldi, et al.
(2017).
"Enhancer SINEs Link Pol III to Pol II Transcription in
Neurons." Cell
Rep 21(10):
2879-2894. https://pubmed.ncbi.nlm.nih.gov/29212033/
Polychronopoulos, D., J. W. D. King, et
al. (2017).
"Conserved non-coding elements: developmental gene regulation
meets genome
organization." Nucleic Acids Res 45(22): 12611-12624. https://pubmed.ncbi.nlm.nih.gov/29121339/
Qiu, Y. and C. Köhler (2020). "Mobility
connects:
transposable elements wire new transcriptional networks by
transferring
transcription factor binding motifs." Biochem Soc Trans
48(3): 1005-1017. https://pubmed.ncbi.nlm.nih.gov/32573687/
Ramachandran, D., M. R. McKain, et al.
(2020).
"Evolutionary Dynamics of Transposable Elements Following a
Shared
Polyploidization Event in the Tribe Andropogoneae." G3
(Bethesda) 10(12):
4387-4398. https://pubmed.ncbi.nlm.nih.gov/32988994/
Rishishwar, L., L. Wang, et al. (2018).
"Evidence
for positive selection on recent human transposable element
insertions." Gene
675: 69-79. https://pubmed.ncbi.nlm.nih.gov/29953920/
Roman, A. C., F. J. Gonzalez-Rico, et
al. (2011).
"B1-SINE retrotransposons: Establishing genomic insulatory
networks."
Mob Genet Elements 1(1):
66-70. https://pubmed.ncbi.nlm.nih.gov/22016846/
Roman, A. C., F. J. Gonzalez-Rico, et
al. (2011).
"Dioxin receptor and SLUG transcription factors regulate the
insulator
activity of B1 SINE retrotransposons via an RNA polymerase
switch." Genome
Res 21(3):
422-432. https://pubmed.ncbi.nlm.nih.gov/21324874/
Römer, C., M. Singh, et al. (2017).
"How to tame
an endogenous retrovirus: HERVH and the evolution of human
pluripotency." Curr
Opin Virol 25:
49-58. https://pubmed.ncbi.nlm.nih.gov/28750248/
Sakashita, A., S. Maezawa, et al.
(2020).
"Endogenous retroviruses drive species-specific germline
transcriptomes in
mammals." Nat Struct Mol Biol 27(10):
967-977. https://pubmed.ncbi.nlm.nih.gov/32895553/
Sakurai, T., S. Nakagawa, et al.
(2017). "Novel
endogenous retrovirus-derived transcript expressed in the bovine
placenta is
regulated by WNT signaling." Biochem J 474(20): 3499-3512. https://pubmed.ncbi.nlm.nih.gov/28899944/
Salces-Ortiz, J., C. Vargas-Chavez, et
al. (2020).
"Transposable elements contribute to the genomic response to
insecticides
in Drosophila melanogaster." Philos Trans R Soc Lond B Biol
Sci 375(1795):
20190341. https://pubmed.ncbi.nlm.nih.gov/32075557/
Santangelo, A. M., F. S. de Souza, et
al. (2007).
"Ancient exaptation of a CORE-SINE retroposon into a highly
conserved
mammalian neuronal enhancer of the proopiomelanocortin gene." PLoS
Genet 3(10):
1813-1826. https://pubmed.ncbi.nlm.nih.gov/17922573/
Santoni, F. A., J. Guerra, et al.
(2012). "HERV-H
RNA is abundant in human embryonic stem cells and a precise
marker for
pluripotency." Retrovirology 9:
111. https://pubmed.ncbi.nlm.nih.gov/23253934/
Sasaki, T., H. Nishihara, et al.
(2008).
"Possible involvement of SINEs in mammalian-specific brain
formation." Proc Natl Acad Sci U S A 105(11): 4220-4225. https://pubmed.ncbi.nlm.nih.gov/18334644/
Sexton, C. E., R. L. Tillett, et al.
(2021). "The
essential but enigmatic regulatory role of HERVH in
pluripotency." Trends
Genet. https://pubmed.ncbi.nlm.nih.gov/34340871/
Spirov, A. V., E. A. Zagriychuk, et al.
(2014).
"Evolutionary Design of Gene Networks: Forced Evolution by
Genomic
Parasites." Parallel Process Lett 24(2). https://pubmed.ncbi.nlm.nih.gov/25558118/
Srinivasachar Badarinarayan, S. and D.
Sauter (2021).
"Switching Sides: How Endogenous Retroviruses Protect Us from
Viral
Infections." J Virol 95(12).
https://pubmed.ncbi.nlm.nih.gov/33883223/
Sun, M. A., G. Wolf, et al. (2021).
"Endogenous
retroviruses drive lineage-specific regulatory evolution across
primate and
rodent placentae." Mol Biol Evol. https://pubmed.ncbi.nlm.nih.gov/34320657/
Tashiro, K., A. Teissier, et al.
(2011). "A
Mammalian Conserved Element Derived from SINE Displays Enhancer
Properties
Recapitulating Satb2 Expression in Early-Born Callosal
Projection
Neurons." PLoS One 6(12):
e28497. https://pubmed.ncbi.nlm.nih.gov/22174821/
Testori, A., L. Caizzi, et al. (2012).
"The role
of transposable elements in shaping the combinatorial
interaction of
transcription factors." BMC Genomics 13(1): 400. https://pubmed.ncbi.nlm.nih.gov/22897927/
Torres-Padilla, M. E. (2020). "On
transposons and
totipotency." Philos Trans R Soc Lond B Biol Sci 375(1795): 20190339. https://pubmed.ncbi.nlm.nih.gov/32075562/
Trizzino, M., Y. Park, et al. (2017).
"Transposable elements are the primary source of novelty in
primate gene
regulation." Genome Res 27(10):
1623-1633. https://pubmed.ncbi.nlm.nih.gov/28855262/
Voronova, A., M. Rendón-Anaya, et al.
(2020).
"Comparative Study of Pine Reference Genomes Reveals
Transposable Element
Interconnected Gene Networks." Genes (Basel) 11(10). https://pubmed.ncbi.nlm.nih.gov/33081418/
Wang, J., N. J. Bowen, et al. (2009).
"A c-Myc
regulatory subnetwork from human transposable element
sequences." Mol
Biosyst 5(12):
1831-1839. https://pubmed.ncbi.nlm.nih.gov/19763338/
Wang, J., C. Vicente-Garcia, et al.
(2015). "MIR
retrotransposon sequences provide insulators to the human
genome." Proc
Natl Acad Sci U S A 112(32):
E4428-4437. https://pubmed.ncbi.nlm.nih.gov/26216945/
Wang, J., G. Xie, et al. (2014).
"Primate-specific endogenous retrovirus-driven transcription
defines
naive-like stem cells." Nature 516(7531):
405-409. https://pubmed.ncbi.nlm.nih.gov/25317556/
Wang, X., G. Ai, et al. (2016).
"Expression and
diversification analysis reveals transposable elements play
important roles in
the origin of Lycopersicon-specific lncRNAs in tomato." New
Phytol 209(4):
1442-1455. https://pubmed.ncbi.nlm.nih.gov/26494192/
Warren, I. A., M. Naville, et al.
(2015).
"Evolutionary impact of transposable elements on genomic
diversity and
lineage-specific innovation in vertebrates." Chromosome Res
23(3): 505-531. https://pubmed.ncbi.nlm.nih.gov/26395902/
Woolfe, A. and G. Elgar (2008).
"Organization of
conserved elements near key developmental regulators in
vertebrate
genomes." Adv Genet 61:
307-338. https://pubmed.ncbi.nlm.nih.gov/18282512/
Xiang, Y. and H. Liang (2021). "The
Regulation
and Functions of Endogenous Retrovirus in Embryo Development and
Stem Cell
Differentiation." Stem Cells Int 2021: 6660936. https://pubmed.ncbi.nlm.nih.gov/33727936/
Zhang, X. and L. J. Muglia (2021).
"Baby's best
Foe-riend: Endogenous retroviruses and the evolution of
eutherian
reproduction." Placenta 113:
1-7. https://pubmed.ncbi.nlm.nih.gov/33685754/
Zhao, H., W. Zhang, et al. (2018).
"Proliferation
of Regulatory DNA Elements Derived from Transposable Elements in
the Maize
Genome." Plant Physiol 176(4):
2789-2803. https://pubmed.ncbi.nlm.nih.gov/29463772/