Table III.2. Natural Genetic Engineering Documented in the Evolution of Sequenced Genomes.

Rearrangement feature(s) noted

Reference

Pack-MULE transposons mediating coding sequence duplications and exon shuffling in rice

(Jiang, Bao et al. 2004; Hanada, Vallejo et al. 2009)

Exon shuffling by a CACTA transposon in beans (glycine max)

(Zabala and Vodkin 2007)

Exon shuffling and amplification by helitrons in maize

(Gupta, Gallavotti et al. 2005; Lai, Li et al. 2005; Morgante, Brunner et al. 2005; Xu and Messing 2006; Jameson, Georgelis et al. 2008)

Exon origination in coffee and Arabidopsis from transposable elements

(Lopes, Carazzolle et al. 2008)

The Hobo transposon involved in endemic inversions in natural Drosophila populations

(Lyttle and Haymer 1992)

Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster; the data include natural populations

(Lim and Simmons 1994)

Generation of a widespread Drosophila buzzatii inversion by a transposable element; two natural hotspots and multiple other rearrangements in the Drosophila buzzatii genome induced by the Gallileo transposon

(Caceres, Ranz et al. 1999; Caceres, Puig et al. 2001; Delprat, Negre et al. 2009)

Penelope and Ulysses retroelements involved in Drosophila virilis chromosome rearrangements at natural breakpoints

(Evgen'ev, Zelentsova et al. 2000; Evgen'ev, Zelentsova et al. 2000)

Chromosome rearrangements involving two transposons

(Gray 2000)

Reviews role of hotspots in transposon-generated chromosome rearrangements

(Lonnig and Saedler 2002)

Abundance and recent occurrence of segmental duplications in the human genome

(Samonte and Eichler 2002)

Segmental duplications found at syntenic region breakpoints in human and mouse genomes

(Bailey, Baertsch et al. 2004)

Review role of transposable elements as chromosome rearrangement catalysts

(Bourque 2009; Zhao and Bourque 2009)

Richness of transposable elements in Drosophila pericentric heterochromatin

(Bergman, Quesneville et al. 2006)

Novel transposable element insertions found near loci encoding insecticide-metabolizing enzymes in Drosophila

(Chen and Li 2007)

 

Segmental duplication associated with a chromosome inversion in malaria mosquito vector

(Coulibaly, Lobo et al. 2007)

Dispersed LINE and SINE repeats in the human genome as substrates for ectopic homologous recombination

(Gu, Zhang et al. 2008)

Coincidence of primate syntenic breakpoints with presence of transposable elements

(Kehrer-Sawatzki and Cooper 2008)

LINE-1 elements associated with deletions in human genome variation

(Han, Lee et al. 2008)

DS breaks associated with repetitive DNA in yeast

  (Argueso, Westmoreland et al. 2008)

Many inversions associated with L1 repeats

 (Zhao and Bourque 2009)

Syntenic breakpoints between human and gibbon genomes showed new insertions of gibbon-specific repeats and mosaic structures involving segmental duplications, LINE, SINE, and LTR elements

 (Girirajan, Chen et al. 2009)

Chromosome rearrangements by Ty element recombinations in a wild strain of yeast used for wine fermentation

(Rachidi, Barre et al. 1999)

Evolutionary breakpoints in Wallaby genome associated with SINEs, LINEs and endogenous retroviruses

(Longo, Carone et al. 2009)

P element insertions next to heat shock promoters in wild Drosophila

(Shilova, Garbuz et al. 2006; Haney and Feder 2009)

 

 

REFERENCES

 

Argueso, J. L., J. Westmoreland, et al. (2008). "Double-strand breaks associated with repetitive DNA can reshape the genome." Proc Natl Acad Sci U S A 105(33): 11845-11850. http://www.ncbi.nlm.nih.gov/pubmed/18701715.

Bailey, J. A., R. Baertsch, et al. (2004). "Hotspots of mammalian chromosomal evolution." Genome Biol 5(4): R23. http://www.ncbi.nlm.nih.gov/pubmed/15059256.

Bergman, C. M., H. Quesneville, et al. (2006). "Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome." Genome Biol 7(11): R112. http://www.ncbi.nlm.nih.gov/pubmed/17134480.

Bourque, G. (2009). "Transposable elements in gene regulation and in the evolution of vertebrate genomes." Curr Opin Genet Dev 19(6): 607-612. http://www.ncbi.nlm.nih.gov/pubmed/19914058.

Caceres, M., M. Puig, et al. (2001). "Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions." Genome Res 11(8): 1353-1364. http://www.ncbi.nlm.nih.gov/pubmed/11483576.

Caceres, M., J. M. Ranz, et al. (1999). "Generation of a widespread Drosophila inversion by a transposable element." Science 285(5426): 415-418. http://www.ncbi.nlm.nih.gov/pubmed/10411506.

Chen, S. and X. Li (2007). "Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes." BMC Evol Biol 7: 46. http://www.ncbi.nlm.nih.gov/pubmed/17381843.

Coulibaly, M. B., N. F. Lobo, et al. (2007). "Segmental duplication implicated in the genesis of inversion 2Rj of Anopheles gambiae." PLoS One 2(9): e849. http://www.ncbi.nlm.nih.gov/pubmed/17786220.

Delprat, A., B. Negre, et al. (2009). "The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination." PLoS One 4(11): e7883. http://www.ncbi.nlm.nih.gov/pubmed/19936241.

Evgen'ev, M., H. Zelentsova, et al. (2000). "Invasion of Drosophila virilis by the Penelope transposable element." Chromosoma 109(5): 350-357. http://www.ncbi.nlm.nih.gov/pubmed/11007494.

Evgen'ev, M. B., H. Zelentsova, et al. (2000). "Mobile elements and chromosomal evolution in the virilis group of Drosophila." Proc Natl Acad Sci U S A 97(21): 11337-11342. http://www.ncbi.nlm.nih.gov/pubmed/11016976.

Girirajan, S., L. Chen, et al. (2009). "Sequencing human-gibbon breakpoints of synteny reveals mosaic new insertions at rearrangement sites." Genome Res 19(2): 178-190. http://www.ncbi.nlm.nih.gov/pubmed/19029537.

Gray, Y. H. (2000). "It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements." Trends Genet 16(10): 461-468. http://www.ncbi.nlm.nih.gov/pubmed/11050333.

Gu, W., F. Zhang, et al. (2008). "Mechanisms for human genomic rearrangements." Pathogenetics 1(1): 4. http://www.ncbi.nlm.nih.gov/pubmed/19014668.

Gupta, S., A. Gallavotti, et al. (2005). "A novel class of Helitron-related transposable elements in maize contain portions of multiple pseudogenes." Plant Mol Biol 57(1): 115-127. http://www.ncbi.nlm.nih.gov/pubmed/15821872.

Han, K., J. Lee, et al. (2008). "L1 recombination-associated deletions generate human genomic variation." Proc Natl Acad Sci U S A 105(49): 19366-19371. http://www.ncbi.nlm.nih.gov/pubmed/19036926.

Hanada, K., V. Vallejo, et al. (2009). "The functional role of pack-MULEs in rice inferred from purifying selection and expression profile." Plant Cell 21(1): 25-38. http://www.ncbi.nlm.nih.gov/pubmed/19136648.

Haney, R. A. and M. E. Feder (2009). "Contrasting patterns of transposable element insertions in Drosophila heat-shock promoters." PLoS One 4(12): e8486. http://www.ncbi.nlm.nih.gov/pubmed/20041194.

Jameson, N., N. Georgelis, et al. (2008). "Helitron mediated amplification of cytochrome P450 monooxygenase gene in maize." Plant Mol Biol 67(3): 295-304. http://www.ncbi.nlm.nih.gov/pubmed/18327644.

Jiang, N., Z. Bao, et al. (2004). "Pack-MULE transposable elements mediate gene evolution in plants." Nature 431(7008): 569-573. http://www.ncbi.nlm.nih.gov/pubmed/15457261.

Kehrer-Sawatzki, H. and D. N. Cooper (2008). "Molecular mechanisms of chromosomal rearrangement during primate evolution." Chromosome Res 16(1): 41-56. http://www.ncbi.nlm.nih.gov/pubmed/18293104.

Lai, J., Y. Li, et al. (2005). "Gene movement by Helitron transposons contributes to the haplotype variability of maize." Proc Natl Acad Sci U S A 102(25): 9068-9073. http://www.ncbi.nlm.nih.gov/pubmed/15951422.

Lim, J. K. and M. J. Simmons (1994). "Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster." Bioessays 16(4): 269-275. http://www.ncbi.nlm.nih.gov/pubmed/8031304.

Longo, M. S., D. M. Carone, et al. (2009). "Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty." BMC Genomics 10: 334. http://www.ncbi.nlm.nih.gov/pubmed/19630942.

Lonnig, W. E. and H. Saedler (2002). "Chromosome rearrangements and transposable elements." Annu Rev Genet 36: 389-410. http://www.ncbi.nlm.nih.gov/pubmed/12429698.

Lopes, F. R., M. F. Carazzolle, et al. (2008). "Transposable elements in Coffea (Gentianales: Rubiacea) transcripts and their role in the origin of protein diversity in flowering plants." Mol Genet Genomics 279(4): 385-401. http://www.ncbi.nlm.nih.gov/pubmed/18231813.

Lyttle, T. W. and D. S. Haymer (1992). "The role of the transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster." Genetica 86(1-3): 113-126. http://www.ncbi.nlm.nih.gov/pubmed/1334904.

Morgante, M., S. Brunner, et al. (2005). "Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize." Nat Genet 37(9): 997-1002. http://www.ncbi.nlm.nih.gov/pubmed/16056225.

Rachidi, N., P. Barre, et al. (1999). "Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae." Mol Gen Genet 261(4-5): 841-850. http://www.ncbi.nlm.nih.gov/pubmed/10394922.

Samonte, R. V. and E. E. Eichler (2002). "Segmental duplications and the evolution of the primate genome." Nat Rev Genet 3(1): 65-72. http://www.ncbi.nlm.nih.gov/pubmed/11823792.

Shilova, V. Y., D. G. Garbuz, et al. (2006). "Remarkable site specificity of local transposition into the Hsp70 promoter of Drosophila melanogaster." Genetics 173(2): 809-820. http://www.ncbi.nlm.nih.gov/pubmed/16582443.

Xu, J. H. and J. Messing (2006). "Maize haplotype with a helitron-amplified cytidine deaminase gene copy." BMC Genet 7: 52. http://www.ncbi.nlm.nih.gov/pubmed/17094807.

Zabala, G. and L. Vodkin (2007). "Novel exon combinations generated by alternative splicing of gene fragments mobilized by a CACTA transposon in Glycine max." BMC Plant Biol 7: 38. http://www.ncbi.nlm.nih.gov/pubmed/17629935.

Zhao, H. and G. Bourque (2009). "Recovering genome rearrangements in the mammalian phylogeny." Genome Res 19(5): 934-942. http://www.ncbi.nlm.nih.gov/pubmed/19411607.