Table II.11. Examples of targeted natural genetic engineering. |
||
Example |
Observed specificity (mechanism) |
References |
DNA import and export |
Special DNA uptake signals; oriT sites for initiating conjugal transfer replication |
DNA uptake signals in bacterial transformation (Smith, Gwinn et al. 1999; Wang, Goodman et al. 2002; Findlay and Redfield 2009; Maughan, Wilson et al. 2010), oriT signals in conjugative plasmids and elements (Adams, Lyras et al. 2002; Grohmann, Muth et al. 2003; Parker, Becker et al. 2005; Garcillan-Barcia, Francia et al. 2009) |
Homologous recombination |
Special sequences stimulating DS breaks and other biochemical events in homologous exchange |
(Cromie, Hyppa et al. 2007; Bagshaw, Pitt et al. 2008; Pryce and McFarlane 2009; Steiner, Steiner et al. 2009) – Chi-like sequences (Smith 1994; Sourice, Biaudet et al. 1998; El Karoui, Biaudet et al. 1999; El Karoui, Schaeffer et al. 2000; Halpern, Chiapello et al. 2007; Dillingham and Kowalczykowski 2008); Spo11 targets and hotspots in S. cerevisiae (Fukuda, Kugou et al. 2008; Nicolas 2009; Tsai, Burt et al. 2010); M26 and other recombination hotspots in S. pombe (Smith 1994; Cromie, Hyppa et al. 2007; Pryce and McFarlane 2009; Steiner, Steiner et al. 2009); repeats in plant and animal genomes (Mezard 2006; Buard and de Massy 2007; Coop and Myers 2007; McVean 2010) |
Transposon insertions at special DNA structures |
Insertion at REP palindromes (transposase specificity), DNA replication forks (interaction with processivity factor) |
(Tobes and Pareja 2006); (Jomantiene, Zhao et al. 2007);(Wolkow, DeBoy et al. 1996; Nunvar, Huckova et al.) (Peters and Craig 2000; Peters and Craig 2001) (Parks, Li et al. 2009) |
IS200/IS605 family target site selection |
DNA sequence homology |
(Barabas, Ronning et al. 2008; Guynet, Achard et al. 2009) |
IS911 target site selection |
InsAB transposase binding to specific DNA sequences; regulated by synthesis of InsA transposase without specificity |
(Rousseau, Loot et al. 2007) |
Cassette replacement/conversion in antigenic variation |
DNA sequence homology at cassette boundaries |
(Barbour and Restrepo 2000; Brayton, Palmer et al. 2002; Palmer, Futse et al. 2006; Palmer and Brayton 2007; Palmer, Bankhead et al. 2009) |
Site-specific recombination (phase variation, antigenic variation, insertions and excisions) |
Protein recognition of DNA sequence; protein-protein interaction |
(Nash 1981), (Silverman, Zieg et al. 1979; Komano, Kim et al. 1994; Komano 1999) |
Diversity-generating retroelements |
Localized mutagenesis at duplicated segment of coding region; reverse transcription, RNA-DNA sequence homology |
(Medhekar and Miller 2007; Guo, Tse et al. 2008) |
Mating type cassette switching (S. cerevisiae, S. pombe, Kluyveromyces lactis) |
Protein recognition of DNA sequence (endonuclease or transposase cleavage at unique site), DNA sequence homology at cassette boundaries |
(Haber 1998; Klar, Ivanova et al. 1998; Dalgaard and Klar 1999; Haber 2006; Klar 2007; Barsoum, Martinez et al. 2010); (Rusche and Rine 2010)
|
Hermes transposon in S. cerevisiae |
Preferential insertion in nucleosome-free regions |
(Gangadharan, Mularoni et al. 2010) |
Immune system V(D)J joining |
Cleavage at specific recombination signal sequences (recognition of RSSs by RAG1+2 transposase); flexible joining by non-homologous end joining (NHEJ) functions |
(Bassing, Swat et al. 2002; Gellert 2002) |
Immune system somatic hypermutation |
5’ exons of immunoglobulin sequences (transcriptional specificity determinants), DIVAC element to suppress repair |
(Kinoshita and Honjo 2001; Inlay, Gao et al. 2006; Yang, Fugmann et al. 2006; Xiang and Garrard 2008; Blagodatski, Batrak et al. 2009) |
Immune system class switching |
Lymphokine-controlled choice of switch region transcription (promoter activation) |
(Kinoshita and Honjo 2001; Honjo, Kinoshita et al. 2002) |
Budding yeast (S. cerevisaea) retroviral-like elements Ty1-Ty4 |
Strong preference for insertion upstream of RNA polymerase III initiation sites (protein-protein interaction of integrase with RNA polymerase III factors TFIIIB and TFIIIC). |
(Kirchner, Connolly et al. 1995; Kim, Vanguri et al. 1998; Bushman 2003; Bachman, Gelbart et al. 2005; Mou, Kenny et al. 2006) |
Budding yeast retroviral-like element Ty1 |
Preference for insertion upstream of RNA polymerase II initiation sites rather than exons. |
(Eibel and Philippsen 1984) |
Budding yeast retroviral-like element Ty5 |
Strong preference for insertion in transcriptionally silenced regions of the yeast genome (protein-protein interaction of integrase targeting domain (TD) with Sir4 silencing protein). Regulated in response to stress by modulation of integrase TD protein phosphorylation. |
(Zou, Ke et al. 1996; Gai and Voytas 1998; Zhu, Zou et al. 1998; Xie, Gai et al. 2001; Bushman 2003; Zhu, Dai et al. 2003; Brady, Schmidt et al. 2008); (Dai, Xie et al. 2007) |
Fission yeast (S. pombe) retroviral-like elements Tf1 & Tf2 |
Insertion almost exclusively in intergenic regions (>98% for Tf1); biased towards PolII promoter-proximal sites, 100 – 400 bp upstream of the translation start by protein-protein interaction with transcription activators; prefers chromosome 3. |
(Behrens, Hayles et al. 2000; Singleton and Levin 2002; Bowen, Jordan et al. 2003); (Bushman 2003; Kordis 2005; Leem, Ripmaster et al. 2008); (Chatterjee, Leem et al. 2009) (Novikova 2009) (Guo and Levin 2010) |
MAGGY (fungal Ty3/gypsy family) retrotransposon |
Targeting to heterochromatin by chromodomain in integrase protein |
(Gao, Hou et al. 2008) |
Dictyostelium discoideum non-LTR retrotransposon TRE5-A |
Insertion upstream of tRNA sequences by protein-protein interactions with RNA Pol III transcription factors |
(Siol, Boutliliss et al. 2006; Chung, Siol et al. 2007) |
Rapidly expanding mPing transposons in rice |
Insertion upstream of coding sequences |
(Naito, Zhang et al. 2009) |
Drosophila ZAM LTR retrotransposons |
Site-specific insertions by protein-DNA recognition |
(Faye, Arnaud et al. 2008) |
Murine Leukemia Virus (MLV) |
Preference for insertion upstream of transcription start sites in human genome; role for IN (integrase) and GAG proteins |
(Bushman 2003; Wu, Li et al. 2003; Mitchell, Beitzel et al. 2004); (Dunbar 2005; Lewinski, Yamashita et al. 2006) |
HIV, SIV |
Preference for insertion into actively transcribed regions of human genome; role for IN (integrase) and GAG proteins; HIV integrase interaction with LEDGF/p75 transcription factor |
(Mitchell, Beitzel et al. 2004; Ciuffi, Llano et al. 2005; Dunbar 2005; Ciuffi and Bushman 2006; Ciuffi, Diamond et al. 2006; Lewinski, Yamashita et al. 2006; Llano, Saenz et al. 2006; Botbol, Raghavendra et al. 2008; Ciuffi 2008); (Engelman and Cherepanov 2008; Desfarges and Ciuffi 2010; Levin, Rosenbluh et al. 2010) |
Gammaretroviral (but not lentiviral) vectors |
Insertion at transcription factor binding sites; 21% recurrence rate at hotspots |
(Cattoglio, Facchini et al. 2007; Deichmann, Hacein-Bey-Abina et al. 2007; Felice, Cattoglio et al. 2009) |
Drosophila gypsy retrovirus |
Site-specific insertion into Ovo locus regulatory region guided by Ovo protein binding sites |
(Labrador and Corces 2001; Labrador, Sha et al. 2008) |
Drosophila P-factors |
Preference for insertion into the 5’ end of transcripts |
(Spradling, Stern et al. 1995) |
Drosophila P-factors |
Targeting (“homing”) to regions of transcription factor function by incorporation of cognate binding site; region-specific |
(Kassis, Noll et al. 1992; Taillebourg and Dura 1999; Bender and Hudson 2000) (Fauvarque and Dura 1983; Hama, Ali et al. 1990; Kassis 2002) |
HeT-A and TART retrotransposons |
Insertion at Drosophila telomeres |
(Casacuberta and Pardue 2002; Casacuberta and Pardue 2003; Casacuberta and Pardue 2003; Pardue and DeBaryshe 2003) |
R1 and R2 LINE element retrotransposons |
Insertion in arthropod ribosomal 28S coding sequences (sequence-specific homing endonuclease) |
(Xiong, Burke et al. 1988; Xiong and Eickbush 1988; Xiong and Eickbush 1988; Burke, Malik et al. 1989) |
Group I homing introns (DNA based) |
Site-specific insertion into coding sequences in bacteria and eukaryotes (sequence-specific endonuclease) |
(Belfort and Perlman 1995) |
Group II homing introns (RNA based) |
Site-specific insertion into coding sequences in bacteria and eukaryotes (RNA recognition of DNA sequence motifs, reverse transcription) |
(Mohr, Smith et al. 2000; Karberg, Guo et al. 2001) |
Group II intron retroelements |
Insertion after intrinsic transcriptional terminators. |
(Robart, Seo et al. 2007) |
REFERENCES
Adams, V., D. Lyras, et al. (2002). "The clostridial mobilisable transposons." Cell Mol Life Sci 59(12): 2033-2043. http://www.ncbi.nlm.nih.gov/pubmed/12568329.
Bachman, N., M. E. Gelbart, et al. (2005). "TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs." Genes Dev 19(8): 955-964. http://www.ncbi.nlm.nih.gov/pubmed/15833918.
Bagshaw, A. T., J. P. Pitt, et al. (2008). "High frequency of microsatellites in S. cerevisiae meiotic recombination hotspots." BMC Genomics 9: 49. http://www.ncbi.nlm.nih.gov/pubmed/18226240.
Barabas, O., D. R. Ronning, et al. (2008). "Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection." Cell 132(2): 208-220. http://www.ncbi.nlm.nih.gov/pubmed/18243097.
Barbour, A. G. and B. I. Restrepo (2000). "Antigenic variation in vector-borne pathogens." Emerg Infect Dis 6(5): 449-457. http://www.ncbi.nlm.nih.gov/pubmed/10998374.
Behrens, R., J. Hayles, et al. (2000). "Fission yeast retrotransposon Tf1 integration is targeted to 5' ends of open reading frames." Nucleic Acids Res 28(23): 4709-4716. http://www.ncbi.nlm.nih.gov/pubmed/11095681.
Belfort, M. and P. S. Perlman (1995). "Mechanisms of intron mobility." J Biol Chem 270(51): 30237-30240. http://www.ncbi.nlm.nih.gov/pubmed/8530436.
Bender, W. and A. Hudson (2000). "P element homing to the Drosophila bithorax complex." Development 127(18): 3981-3992. http://www.ncbi.nlm.nih.gov/pubmed/10952896.
Blagodatski, A., V. Batrak, et al. (2009). "A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation." PLoS Genet 5(1): e1000332. http://www.ncbi.nlm.nih.gov/pubmed/19132090.
Botbol, Y., N. K. Raghavendra, et al. (2008). "Chromatinized templates reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro." Nucleic Acids Res 36(4): 1237-1246. http://www.ncbi.nlm.nih.gov/pubmed/18174227.
Bowen, N. J., I. K. Jordan, et al. (2003). "Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe." Genome Res 13(9): 1984-1997. http://www.ncbi.nlm.nih.gov/pubmed/12952871.
Brady, T. L., C. L. Schmidt, et al. (2008). "Targeting integration of the Saccharomyces Ty5 retrotransposon." Methods Mol Biol 435: 153-163. http://www.ncbi.nlm.nih.gov/pubmed/18370074.
Brayton, K. A., G. H. Palmer, et al. (2002). "Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion." Mol Microbiol 43(5): 1151-1159. http://www.ncbi.nlm.nih.gov/pubmed/11918803.
Buard, J. and B. de Massy (2007). "Playing hide and seek with mammalian meiotic crossover hotspots." Trends Genet 23(6): 301-309. http://www.ncbi.nlm.nih.gov/pubmed/17434233.
Burke, W. D., H. S. Malik, et al. (1989). "The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods." Mol Biol Evol 16(4): 502-511. http://www.ncbi.nlm.nih.gov/pubmed/10331276.
Bushman, F. D. (2003). "Targeting survival: integration site selection by retroviruses and LTR-retrotransposons." Cell 115(2): 135-138. http://www.ncbi.nlm.nih.gov/pubmed/14567911.
Casacuberta, E. and M. L. Pardue (2002). "Coevolution of the telomeric retrotransposons across Drosophila species." Genetics 161(3): 1113-1124. http://www.ncbi.nlm.nih.gov/pubmed/12136015.
Casacuberta, E. and M. L. Pardue (2003). "HeT-A elements in Drosophila virilis: retrotransposon telomeres are conserved across the Drosophila genus." Proc Natl Acad Sci U S A 100(24): 14091-14096. http://www.ncbi.nlm.nih.gov/pubmed/14614149.
Casacuberta, E. and M. L. Pardue (2003). "Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group." Proc Natl Acad Sci U S A 100(6): 3363-3368. http://www.ncbi.nlm.nih.gov/pubmed/12626755\.
Cattoglio, C., G. Facchini, et al. (2007). "Hot spots of retroviral integration in human CD34+ hematopoietic cells." Blood 110(6): 1770-1778. http://www.ncbi.nlm.nih.gov/pubmed/17507662.
Chatterjee, A. G., Y. E. Leem, et al. (2009). "The chromodomain of Tf1 integrase promotes binding to cDNA and mediates target site selection." J Virol 83(6): 2675-2685. http://www.ncbi.nlm.nih.gov/pubmed/19109383.
Chung, T., O. Siol, et al. (2007). "Protein interactions involved in tRNA gene-specific integration of Dictyostelium discoideum non-long terminal repeat retrotransposon TRE5-A." Mol Cell Biol 27(24): 8492-8501. http://www.ncbi.nlm.nih.gov/pubmed/17923679.
Ciuffi, A. (2008). "Mechanisms governing lentivirus integration site selection." Curr Gene Ther\ 8(6): 419-429. http://www.ncbi.nlm.nih.gov/pubmed/19075625.
Ciuffi, A. and F. D. Bushman (2006). "Retroviral DNA integration: HIV and the role of LEDGF/p75." Trends Genet 22(7): 388-395. http://www.ncbi.nlm.nih.gov/pubmed/16730094.
Ciuffi, A., T. L. Diamond, et al. (2006). "Modulating target site selection during human immunodeficiency virus DNA integration in vitro with an engineered tethering factor." Hum Gene Ther 17(9): 960-967. http://www.ncbi.nlm.nih.gov/pubmed/16972764.
Ciuffi, A., M. Llano, et al. (2005). "A role for LEDGF/p75 in targeting HIV DNA integration." Nat Med\ 11(12): 1287-1289. http://www.ncbi.nlm.nih.gov/pubmed/16311605.
Coop, G. and S. R. Myers (2007). "Live hot, die young: transmission distortion in recombination hotspots." PLoS Genet 3(3): e35. http://www.ncbi.nlm.nih.gov/pubmed/17352536.
Cromie, G. A., R. W. Hyppa, et al. (2007). "A discrete class of intergenic DNA dictates meiotic DNA break hotspots in fission yeast." PLoS Genet 3(8): e141. http://www.ncbi.nlm.nih.gov/pubmed/17722984.
Dai, J., W. Xie, et al. (2007). "Phosphorylation regulates integration of the yeast Ty5 retrotransposon into heterochromatin." Mol Cell 27(2): 289-299. http://www.ncbi.nlm.nih.gov/pubmed/17643377.
Dalgaard, J. Z. and A. J. Klar (1999). "Orientation of DNA replication establishes mating-type switching pattern in S. pombe." Nature 400(6740): 181-184. http://www.ncbi.nlm.nih.gov/pubmed/10408447.
Deichmann, A., S. Hacein-Bey-Abina, et al. (2007). "Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy." J Clin Invest\ 117(8): 2225-2232. http://www.ncbi.nlm.nih.gov/pubmed/17671652.
Desfarges, S. and A. Ciuffi (2010). "Retroviral Integration Site Selection." Viruses 2: 111-130. .
Dillingham, M. S. and S. C. Kowalczykowski (2008). "RecBCD enzyme and the repair of double-stranded DNA breaks." Microbiol Mol Biol Rev 72(4): 642-671. http://www.ncbi.nlm.nih.gov/pubmed/19052323.
Dunbar, C. E. (2005). "Stem cell gene transfer: insights into integration and hematopoiesis from primate genetic marking studies." Ann N Y Acad Sci 1044: 178-182\. http://www.ncbi.nlm.nih.gov/pubmed/15958711.
Eibel, H. and P. Philippsen (1984). "Preferential integration of yeast transposable element Ty into a promoter region." Nature 307(5949): 386-388. http://www.ncbi.nlm.nih.gov/pubmed/6320003.
El Karoui, M., V. Biaudet, et al. (1999). "Characteristics of Chi distribution on different bacterial genomes." Res Microbiol 150(9-10): 579-587. http://www.ncbi.nlm.nih.gov/pubmed/10672998.
El Karoui, M., M. Schaeffer, et al. (2000). "Orientation specificity of the Lactococcus lactis Chi site." Genes Cells 5(6): 453-461. http://www.ncbi.nlm.nih.gov/pubmed/10886371.
Engelman, A. and P. Cherepanov (2008). "The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication." PLoS Pathog 4(3): e1000046. http://www.ncbi.nlm.nih.gov/pubmed/18369482.
Fauvarque, M. O. and J. M. Dura (1983). "polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila." Genes Dev 7(8): 1508-1520. http://www.ncbi.nlm.nih.gov/pubmed/8101825.
Faye, B., F. Arnaud, et al. (2008). "Functional characteristics of a highly specific integrase encoded by an LTR-retrotransposon." PLoS One 3(9): e3185. http://www.ncbi.nlm.nih.gov/pubmed/18784842.
Felice, B., C. Cattoglio, et al. (2009). "Transcription factor binding sites are genetic determinants of retroviral integration in the human genome." PLoS One 4(2): e4571. http://www.ncbi.nlm.nih.gov/pubmed/19238208.
Findlay, W. A. and R. J. Redfield (2009). "Coevolution of DNA uptake sequences and bacterial proteomes." Genome Biol Evol 1: 45-55. http://www.ncbi.nlm.nih.gov/pubmed/20333176\.
Fukuda, T., K. Kugou, et al. (2008). "Targeted induction of meiotic double-strand breaks reveals chromosomal domain-dependent regulation of Spo11 and interactions among potential sites of meiotic recombination." Nucleic Acids Res 36(3): 984-997. http://www.ncbi.nlm.nih.gov/pubmed/18096626\.
Gai, X. and D. F. Voytas (1998). "A single amino acid change in the yeast retrotransposon Ty5 abolishes targeting to silent chromatin." Mol Cell 1(7): 1051-1055. http://www.ncbi.nlm.nih.gov/pubmed/9651588.
Gangadharan, S., L. Mularoni, et al. (2010). "DNA transposon Hermes inserts into DNA in nucleosome-free regions in vivo." Proc Natl Acad Sci U S A 107(51): 21966-21972. http://www.ncbi.nlm.nih.gov/pubmed/21131571.
Gao, X., Y. Hou, et al. (2008). "Chromodomains direct integration of retrotransposons to heterochromatin." Genome Res 18(3): 359-369. http://www.ncbi.nlm.nih.gov/pubmed/18256242.
Garcillan-Barcia, M. P., M. V. Francia, et al. (2009). "The diversity of conjugative relaxases and its application in plasmid classification." FEMS Microbiol Rev 33(3): 657-687. http://www.ncbi.nlm.nih.gov/pubmed/19396961.
Grohmann, E., G. Muth, et al. (2003). "Conjugative plasmid transfer in gram-positive bacteria." Microbiol Mol Biol Rev 67(2): 277-301. http://www.ncbi.nlm.nih.gov/pubmed/12794193.
Guo, H., L. V. Tse, et al. (2008). "Diversity-generating retroelement homing regenerates target sequences for repeated rounds of codon rewriting and protein diversification." Mol Cell 31(6): 813-823. http://www.ncbi.nlm.nih.gov/pubmed/18922465.
Guo, Y. and H. L. Levin (2010). "High-throughput sequencing of retrotransposon integration provides a saturated profile of target activity in Schizosaccharomyces pombe." Genome Res 20(2): 239-248. http://www.ncbi.nlm.nih.gov/pubmed/20040583.
Guynet, C., A. Achard, et al. (2009). "Resetting the site: redirecting integration of an insertion sequence in a predictable way." Mol Cell 34(5): 612-619. http://www.ncbi.nlm.nih.gov/pubmed/19524540.
Haber, J. E. (1998). "Mating-type gene switching in Saccharomyces cerevisiae." Annu Rev Genet 32: 561-599. http://www.ncbi.nlm.nih.gov/pubmed/9928492.
Haber, J. E. (2006). "Transpositions and translocations induced by site-specific double-strand breaks in budding yeast." DNA Repair (Amst) 5(9-10): 998-1009. http://www.ncbi.nlm.nih.gov/pubmed/16807137.
Halpern, D., H. Chiapello, et al. (2007). "Identification of DNA motifs implicated in maintenance of bacterial core genomes by predictive modeling." PLoS Genet 3(9): 1614-1621. http://www.ncbi.nlm.nih.gov/pubmed/17941709.
Hama, C., Z. Ali, et al. (1990). "Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter." Genes Dev 4(7): 1079-1093. http://www.ncbi.nlm.nih.gov/pubmed/1976568.
Honjo, T., K. Kinoshita, et al. (2002). "Molecular mechanism of class switch recombination: linkage with somatic hypermutation." Annu Rev Immunol 20: 165-196. http://www.ncbi.nlm.nih.gov/pubmed/11861601.
Inlay, M. A., H. H. Gao, et al. (2006). "Roles of the Ig kappa light chain intronic and 3' enhancers in Igk somatic hypermutation." J Immunol 177(2): 1146-1151. http://www.ncbi.nlm.nih.gov/pubmed/16818772.
Jomantiene, R., Y. Zhao, et al. (2007). "Sequence-variable mosaics: composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas." DNA Cell Biol 26(8): 557-564. http://www.ncbi.nlm.nih.gov/pubmed/17688407.
Karberg, M., H. Guo, et al. (2001). "Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria." Nat Biotechnol 19(12): 1162-1167. http://www.ncbi.nlm.nih.gov/pubmed/11731786.
Kassis, J. A., E. Noll, et al. (1992). "Altering the insertional specificity of a Drosophila transposable element." Proc Natl Acad Sci U S A 89(5): 1919-1923. http://www.ncbi.nlm.nih.gov/pubmed/1311855.
Kim, J. M., S. Vanguri, et al. (1998). "Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence." Genome Res 8(5): 464-478. http://www.ncbi.nlm.nih.gov/pubmed/9582191.
Kinoshita, K. and T. Honjo (2001). "Linking class-switch recombination with somatic hypermutation." Nat Rev Mol Cell Biol 2(7): 493-503. http://www.ncbi.nlm.nih.gov/pubmed/11433363.
Kirchner, J., C. M. Connolly, et al. (1995). "Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element." Science 267(5203): 1488-1491. http://www.ncbi.nlm.nih.gov/pubmed/7878467.
Klar, A. J. (2007). "Lessons learned from studies of fission yeast mating-type switching and silencing." Annu Rev Genet 41: 213-236. http://www.ncbi.nlm.nih.gov/pubmed/17614787.
Klar, A. J., A. V. Ivanova, et al. (1998). "Multiple epigenetic events regulate mating-type switching of fission yeast." Novartis Found Symp 214: 87-99; discussion 99-103. http://www.ncbi.nlm.nih.gov/pubmed/9601013.
Komano, T. (1999). "Shufflons: multiple inversion systems and integrons." Annu Rev Genet 33: 171-191. http://www.ncbi.nlm.nih.gov/pubmed/10690407.
Komano, T., S. R. Kim, et al. (1994). "DNA rearrangement of the shufflon determines recipient specificity in liquid mating of IncI1 plasmid R64." J Mol Biol 243(1): 6-9. http://www.ncbi.nlm.nih.gov/pubmed/7932741.
Kordis, D. (2005). "A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses." Gene 347(2): 161-173. http://www.ncbi.nlm.nih.gov/pubmed/15777633.
Labrador, M. and V. G. Corces (2001). "Protein determinants of insertional specificity for the Drosophila gypsy retrovirus." Genetics 158(3): 1101-1110. http://www.ncbi.nlm.nih.gov/pubmed/11454759.
Labrador, M., K. Sha, et al. (2008). "Insulator and Ovo proteins determine the frequency and specificity of insertion of the gypsy retrotransposon in Drosophila melanogaster." Genetics 180(3): 1367-1378. http://www.ncbi.nlm.nih.gov/pubmed/18791225.
Leem, Y. E., T. L. Ripmaster, et al. (2008). "Retrotransposon Tf1 is targeted to Pol II promoters by transcription activators." Mol Cell 30(1): 98-107. http://www.ncbi.nlm.nih.gov/pubmed/18406330.
Levin, A., J. Rosenbluh, et al. (2010). "Integration of HIV-1 DNA is regulated by interplay between viral rev and cellular LEDGF/p75 proteins." Mol Med 16(1-2): 34-44. http://www.ncbi.nlm.nih.gov/pubmed/19855849.
Lewinski, M. K., M. Yamashita, et al. (2006). "Retroviral DNA integration: viral and cellular determinants of target-site selection." PLoS Pathog 2(6): e60. http://www.ncbi.nlm.nih.gov/pubmed/16789841.
Llano, M., D. T. Saenz, et al. (2006). "An essential role for LEDGF/p75 in HIV integration." Science 314(5798): 461-464. http://www.ncbi.nlm.nih.gov/pubmed/16959972.
Maughan, H., L. A. Wilson, et al. (2010). "Bacterial DNA Uptake Sequences Can Accumulate by Molecular Drive Alone." Genetics 186(2): 613-627. http://www.ncbi.nlm.nih.gov/pubmed/20628039\.
McVean, G. (2010). "What drives recombination hotspots to repeat DNA in humans?" Philos Trans R Soc Lond B Biol Sci 365(1544): 1213-1218. http://www.ncbi.nlm.nih.gov/pubmed/20308096.
Medhekar, B. and J. F. Miller (2007). "Diversity-generating retroelements." Curr Opin Microbiol 10(4): 388-395. http://www.ncbi.nlm.nih.gov/pubmed/17703991.
Mezard, C. (2006). "Meiotic recombination hotspots in plants." Biochem Soc Trans 34(Pt 4): 531-534. http://www.ncbi.nlm.nih.gov/pubmed/16856852.
Mitchell, R. S., B. F. Beitzel, et al. (2004). "Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences." PLoS Biol 2(8): E234. http://www.ncbi.nlm.nih.gov/pubmed/15314653.
Mohr, G., D. Smith, et al. (2000). "Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences." Genes Dev 14(5): 559-573. http://www.ncbi.nlm.nih.gov/pubmed/10716944.
Mou, Z., A. E. Kenny, et al. (2006). "Hos2 and Set3 promote integration of Ty1 retrotransposons at tRNA genes in Saccharomyces cerevisiae." Genetics 172(4): 2157-2167. http://www.ncbi.nlm.nih.gov/pubmed/16415356.
Naito, K., F. Zhang, et al. (2009). "Unexpected consequences of a sudden and massive transposon amplification on rice gene expression." Nature 461(7267): 1130-1134. http://www.ncbi.nlm.nih.gov/pubmed/19847266.
Nash, H. A. (1981). "Integration and excision of bacteriophage lambda: the mechanism of conservation site specific recombination." Annu Rev Genet 15: 143-167. http://www.ncbi.nlm.nih.gov/pubmed/6461289.
Nicolas, A. (2009). "Modulating and targeting meiotic double-strand breaks in Saccharomyces cerevisiae." Methods Mol Biol 557: 27-33. http://www.ncbi.nlm.nih.gov/pubmed/19799174.
Novikova, O. (2009). "Chromodomains and LTR retrotransposons in plants." Commun Integr Biol 2(2): 158-162. http://www.ncbi.nlm.nih.gov/pubmed/19513271.
Nunvar, J., T. Huckova, et al. (2010). "Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes." BMC Genomics 11(1): 44. http://www.ncbi.nlm.nih.gov/pubmed/20085626.
Palmer, G. H., T. Bankhead, et al. (2009). "'Nothing is permanent but change'- antigenic variation in persistent bacterial pathogens." Cell Microbiol 11(12): 1697-1705. http://www.ncbi.nlm.nih.gov/pubmed/19709057.
Palmer, G. H. and K. A. Brayton (2007). "Gene conversion is a convergent strategy for pathogen antigenic variation." Trends Parasitol 23(9): 408-413. http://www.ncbi.nlm.nih.gov/pubmed/17662656.
Palmer, G. H., J. E. Futse, et al. (2006). "Insights into mechanisms of bacterial antigenic variation derived from the complete genome sequence of Anaplasma marginale." Ann N Y Acad Sci 1078: 15-25. http://www.ncbi.nlm.nih.gov/pubmed/17114676.
Pardue, M. L. and P. G. DeBaryshe (2003). "Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres." Annu Rev Genet 37: 485-511. http://www.ncbi.nlm.nih.gov/pubmed/14616071.
Parker, C., E. Becker, et al. (2005). "Elements in the co-evolution of relaxases and their origins of transfer." Plasmid 53(2): 113-118. http://www.ncbi.nlm.nih.gov/pubmed/15737398.
Parks, A. R., Z. Li, et al. (2009). "Transposition into replicating DNA occurs through interaction with the processivity factor." Cell 138(4): 685-695. http://www.ncbi.nlm.nih.gov/pubmed/19703395.
Peters, J. E. and N. L. Craig (2000). "Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates." Mol Cell 6(3): 573-582. http://www.ncbi.nlm.nih.gov/pubmed/11030337.
Peters, J. E. and N. L. Craig (2001). "Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE." Genes Dev 15(6): 737-747. http://www.ncbi.nlm.nih.gov/pubmed/11274058.
Pryce, D. W. and R. J. McFarlane (2009). "The meiotic recombination hotspots of Schizosaccharomyces pombe." Genome Dyn 5: 1-13. http://www.ncbi.nlm.nih.gov/pubmed/18948703.
Robart, A. R., W. Seo, et al. (2007). "Insertion of group II intron retroelements after intrinsic transcriptional terminators." Proc Natl Acad Sci U S A 104(16): 6620-6625. http://www.ncbi.nlm.nih.gov/pubmed/17420455.
Rousseau, P., C. Loot, et al. (2007). "Control of IS911 target selection: how OrfA may ensure IS dispersion." Mol Microbiol 63(6): 1701-1709. http://www.ncbi.nlm.nih.gov/pubmed/17367389.
Rusche, L. N. and J. Rine (2010). "Switching the mechanism of mating type switching: a domesticated transposase supplants a domesticated homing endonuclease." Genes Dev 24(1): 10-14. http://www.ncbi.nlm.nih.gov/pubmed/20047997.
Silverman, M., J. Zieg, et al. (1979). "Phase variation in Salmonella: genetic analysis of a recombinational switch." Proc Natl Acad Sci U S A 76(1): 391-395. http://www.ncbi.nlm.nih.gov/pubmed/370828.
Singleton, T. L. and H. L. Levin (2002). "A long terminal repeat retrotransposon of fission yeast has strong preferences for specific sites of insertion." Eukaryot Cell 1(1): 44-55. http://www.ncbi.nlm.nih.gov/pubmed/12455970.
Siol, O., M. Boutliliss, et al. (2006). "Role of RNA polymerase III transcription factors in the selection of integration sites by the dictyostelium non-long terminal repeat retrotransposon TRE5-A." Mol Cell Biol 26(22): 8242-8251. http://www.ncbi.nlm.nih.gov/pubmed/16982688.
Smith, G. R. (1994). "Hotspots of homologous recombination." Experientia 50(3): 234-241. http://www.ncbi.nlm.nih.gov/pubmed/8143797.
Smith, H. O., M. L. Gwinn, et al. (1999). "DNA uptake signal sequences in naturally transformable bacteria." Res Microbiol 150(9-10): 603-616. http://www.ncbi.nlm.nih.gov/pubmed/10673000.
Sourice, S., V. Biaudet, et al. (1998). "Identification of the Chi site of Haemophilus influenzae as several sequences related to the Escherichia coli Chi site." Mol Microbiol 27(5): 1021-1029. http://www.ncbi.nlm.nih.gov/pubmed/9535091.
Spradling, A. C., D. M. Stern, et al. (1995). "Gene disruptions using P transposable elements: an integral component of the Drosophila genome project." Proc Natl Acad Sci U S A 92(24): 10824-10830. http://www.ncbi.nlm.nih.gov/pubmed/7479892.
Steiner, W. W., E. M. Steiner, et al. (2009). "Novel nucleotide sequence motifs that produce hotspots of meiotic recombination in Schizosaccharomyces pombe." Genetics 182(2): 459-469. http://www.ncbi.nlm.nih.gov/pubmed/19363124.
Taillebourg, E. and J. M. Dura (1999). "A novel mechanism for P element homing in Drosophila." Proc Natl Acad Sci U S A 96(12): 6856-6861. http://www.ncbi.nlm.nih.gov/pubmed/10359803.
Tobes, R. and E. Pareja (2006). "Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements." BMC Genomics 7: 62. http://www.ncbi.nlm.nih.gov/pubmed/16563168.
Tsai, I. J., A. Burt, et al. (2010). "Conservation of recombination hotspots in yeast." Proc Natl Acad Sci U S A 107(17): 7847-7852. http://www.ncbi.nlm.nih.gov/pubmed/20385822.
Wang, Y., S. D. Goodman, et al. (2002). "Natural transformation and DNA uptake signal sequences in Actinobacillus actinomycetemcomitans." J Bacteriol 184(13): 3442-3449. http://www.ncbi.nlm.nih.gov/pubmed/12057937.
Wolkow, C. A., R. T. DeBoy, et al. (1996). "Conjugating plasmids are preferred targets for Tn7." Genes Dev 10(17): 2145-2157. http://www.ncbi.nlm.nih.gov/pubmed/8804309.
Wu, X., Y. Li, et al. (2003). "Transcription start regions in the human genome are favored targets for MLV integration." Science 300(5626): 1749-1751. http://www.ncbi.nlm.nih.gov/pubmed/12805549.
Xiang, Y. and W. T. Garrard (2008). "The Downstream Transcriptional Enhancer, Ed, positively regulates mouse Ig kappa gene expression and somatic hypermutation." J Immunol 180(10): 6725-6732. http://www.ncbi.nlm.nih.gov/pubmed/18453592.
Xie, W., X. Gai, et al. (2001). "Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p." Mol Cell Biol 21(19): 6606-6614. http://www.ncbi.nlm.nih.gov/pubmed/11533248.
Xiong, Y., W. D. Burke, et al. (1988). "Ribosomal DNA insertion elements R1Bm and R2Bm can transpose in a sequence specific manner to locations outside the 28S genes." Nucleic Acids Res 16(22): 10561-10573. http://www.ncbi.nlm.nih.gov/pubmed/2849750.
Xiong, Y. and T. H. Eickbush (1988). "The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons." Mol Cell Biol 8(1): 114-123. http://www.ncbi.nlm.nih.gov/pubmed/2447482.
Xiong, Y. E. and T. H. Eickbush (1988). "Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm." Cell 55(2): 235-246. http://www.ncbi.nlm.nih.gov/pubmed/2844414.
Yang, S. Y., S. D. Fugmann, et al. (2006). "Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences." J Exp Med 203(13): 2919-2928. http://www.ncbi.nlm.nih.gov/pubmed/17178919.
Zhu, Y., J. Dai, et al. (2003). "Controlling integration specificity of a yeast retrotransposon." Proc Natl Acad Sci U S A 100(10): 5891-5895. http://www.ncbi.nlm.nih.gov/pubmed/12730380.
Zhu, Y., S. Zou, et al. (1998). "Tagging chromatin with retrotransposons: target specificity of the Saccharomyces Ty5 retrotransposon changes with the chromosomal localization of Sir3p and Sir4p." Genes Dev 13(20): 2738-2749. http://www.ncbi.nlm.nih.gov/pubmed/10541559.
Zou, S., N. Ke, et al. (1996). "The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci." Genes Dev 10(5): 634-645. http://www.ncbi.nlm.nih.gov/pubmed/8598292.