Origination_of_Novel_Exons_from_Mobile_DNA_Elements


      

 Origination of Novel Exons from Mobile DNA Elements (Volff 2006; Bowen and Jordan 2007; Piriyapongsa, Rutledge et al. 2007; Sorek 2007; Sorek 2009; Schmitz and Brosius 2011; Zhang, Edwards et al. 2013; Park, Kim et al. 2015) (Ponicsan, Kugel et al. 2010)

Taxa

Mobile DNA Exonized

Reference(s)

Green algae

Transposable elements

(Philippsen, Avaca-Crusca et al. 2016)

Plants (coffee, rice, Arabidopsis, etc.)

Transposable elements

(Lopes, Carazzolle et al. 2008; Hoen and Bureau 2015)

Plants

Ds transposons

(Liu and Charng 2012)

Rice

Ds transposons

(Chien, Liu et al. 2013)

Non-mammalian vertebrates and invertebrates

“…transcriptomes of vertebrates exhibit significant levels of exonization of TEs, only anecdotal cases were found in invertebrates. In vertebrates, as in mammals, the exonized TEs are mostly alternatively spliced…”

(Sela, Kim et al. 2010)

Ancestral vertebrate

“…a more than 200-base-pair ultraconserved region, 100% identical in mammals, and 80% identical to the coelacanth SINE, contains a 31-amino-acid-residue alternatively spliced exon of the messenger RNA processing gene PCBP2…”

(Bejerano, Lowe et al. 2006)

Mammal

“Although…not evolutionarily related, mammalian TMPO and ZNF451…both code for splice isoforms that contain LAP2alpha domains…related to the first ORF from a DIRS1-like retrotransposon…domestication happened separately and resulted in proteins that combine retrotransposon and host protein domains. The alternative splicing of the retrotransposed sequence allowed the production of both the new and the untouched original isoforms...”

(Abascal, Tress et al. 2015)

Mammal

MIR retrotransposons

(Annibalini, Bielli et al. 2016) (Krull, Petrusma et al. 2007)

Mouse

L1 retrotransposons; “antisense insertions results in an increased potential for exonization”

(Zemojtel, Penzkofer et al. 2007)

 

Rat

Exonization of L1 and ERV (endogenous retrovirus) in embryonically expressed Rtdpoz-T1 and -T2 locus

(Huang, Lin et al. 2009)

Human and mouse

“…exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes…cases of primate-specific Alu elements that depend on RNA editing for their exonization…”

(Sela, Mersch et al. 2010; Mandal, Pandey et al. 2013; Zarnack, Konig et al. 2013) (Moller-Krull, Zemann et al. 2008)

Primate

Alu exonization in BCS1L, other loci

(Park, Kim et al. 2015) (Krull, Brosius et al. 2005)

Primate

RNA edited Alu element in human nuclear prelamin A recognition factor gene transcript

(Moller-Krull, Zemann et al. 2008)

Primate

MIR retrotransposon

(Lin, Jiang et al. 2009)

Primate

LINE retrotransposon in ZRANB2 locus

(Park, Huh et al. 2012)

Human

SINE retrotransposons

(Vorechovsky 2010)

Human

Anti-sense Alu elements; Alu-derived segments in two Bcl-family proteins.

(Huda and Bushel 2013) (Wu, Li et al. 2007; Corvelo and Eyras 2008) (Schwartz, Gal-Mark et al. 2009)

Human

Exons derived from Alu elements but also the exons from the TEs of other families were preferentially established in zinc finger (ZNF) genes.”

(Zhang, Edwards et al. 2013)

Human

“Long Terminal Repeat (LTR) retrotransposons are associated with 1,057 human genes (5.8%). In 256 cases LTR retrotransposons were observed in protein-coding regions, while 50 distinct protein coding exons in 45 genes were comprised exclusively of LTR RetroTransposon Sequence (LRTS)…an alternatively spliced exon of the Interleukin 22 receptor, alpha 2 gene (IL22RA2) derived from a sequence of retrotransposon of the Mammalian apparent LTR retrotransposons (MaLR) family …hypothesize that the recruitment of the part of LTR as a novel exon…a result of a single mutation in the proto-splice site…”

(Piriyapongsa, Polavarapu et al. 2007)

Human

“…human nuclear prelamin A recognition factor contains a primate-specific Alu-exon that exclusively depends on RNA editing for its exonization.”

(Lev-Maor, Sorek et al. 2007)


REFERENCES

 

Abascal, F., M. L. Tress, et al. (2015). "Alternative splicing and co-option of transposable elements: the case of TMPO/LAP2alpha and ZNF451 in mammals." Bioinformatics 31(14): 2257-2261. http://www.ncbi.nlm.nih.gov/pubmed/25735770.

Annibalini, G., P. Bielli, et al. (2016). "MIR retroposon exonization promotes evolutionary variability and generates species-specific expression of IGF-1 splice variants." Biochim Biophys Acta 1859(5): 757-768. http://www.ncbi.nlm.nih.gov/pubmed/27048986.

Bejerano, G., C. B. Lowe, et al. (2006). "A distal enhancer and an ultraconserved exon are derived from a novel retroposon." Nature 441(7089): 87-90. http://www.ncbi.nlm.nih.gov/pubmed/16625209.

Bowen, N. J. and I. K. Jordan (2007). "Exaptation of protein coding sequences from transposable elements." Genome Dyn 3: 147-162. http://www.ncbi.nlm.nih.gov/pubmed/18753790.

Chien, T. Y., L. Y. Liu, et al. (2013). "Analysis of new functional profiles of protein isoforms yielded by ds exonization in rice." Evol Bioinform Online 9: 417-427. http://www.ncbi.nlm.nih.gov/pubmed/24137048.

Corvelo, A. and E. Eyras (2008). "Exon creation and establishment in human genes." Genome Biol 9(9): R141. http://www.ncbi.nlm.nih.gov/pubmed/18811936.

Hoen, D. R. and T. E. Bureau (2015). "Discovery of novel genes derived from transposable elements using integrative genomic analysis." Mol Biol Evol 32(6): 1487-1506. http://www.ncbi.nlm.nih.gov/pubmed/25713212.

Huang, C. J., W. Y. Lin, et al. (2009). "Transcription of the rat testis-specific Rtdpoz-T1 and -T2 retrogenes during embryo development: co-transcription and frequent exonisation of transposable element sequences." BMC Mol Biol 10: 74. http://www.ncbi.nlm.nih.gov/pubmed/19630990.

Huda, A. and P. R. Bushel (2013). "Widespread Exonization of Transposable Elements in Human Coding Sequences is Associated with Epigenetic Regulation of Transcription." Transcr Open Access 1(1). http://www.ncbi.nlm.nih.gov/pubmed/24860841.

Krull, M., J. Brosius, et al. (2005). "Alu-SINE exonization: en route to protein-coding function." Mol Biol Evol 22(8): 1702-1711. http://www.ncbi.nlm.nih.gov/pubmed/15901843.

Krull, M., M. Petrusma, et al. (2007). "Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs)." Genome Res 17(8): 1139-1145. http://www.ncbi.nlm.nih.gov/pubmed/17623809.

Lev-Maor, G., R. Sorek, et al. (2007). "RNA-editing-mediated exon evolution." Genome Biol 8(2): R29. http://www.ncbi.nlm.nih.gov/pubmed/17326827.

Lin, L., P. Jiang, et al. (2009). "Large-scale analysis of exonized mammalian-wide interspersed repeats in primate genomes." Hum Mol Genet 18(12): 2204-2214. http://www.ncbi.nlm.nih.gov/pubmed/19324900.

Liu, L. Y. and Y. C. Charng (2012). "Genome-wide survey of ds exonization to enrich transcriptomes and proteomes in plants." Evol Bioinform Online 8: 575-587. http://www.ncbi.nlm.nih.gov/pubmed/23091369.

Lopes, F. R., M. F. Carazzolle, et al. (2008). "Transposable elements in Coffea (Gentianales: Rubiacea) transcripts and their role in the origin of protein diversity in flowering plants." Mol Genet Genomics 279(4): 385-401. http://www.ncbi.nlm.nih.gov/pubmed/18231813.

Mandal, A. K., R. Pandey, et al. (2013). "Transcriptome-wide expansion of non-coding regulatory switches: evidence from co-occurrence of Alu exonization, antisense and editing." Nucleic Acids Res 41(4): 2121-2137. http://www.ncbi.nlm.nih.gov/pubmed/23303787.

Moller-Krull, M., A. Zemann, et al. (2008). "Beyond DNA: RNA editing and steps toward Alu exonization in primates." J Mol Biol 382(3): 601-609. http://www.ncbi.nlm.nih.gov/pubmed/18680752.

Park, S. J., J. W. Huh, et al. (2012). "Intron Retention and TE Exonization Events in ZRANB2." Comp Funct Genomics 2012: 170208. http://www.ncbi.nlm.nih.gov/pubmed/22778693.

Park, S. J., Y. H. Kim, et al. (2015). "Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution." Mol Cells 38(11): 950-958. http://www.ncbi.nlm.nih.gov/pubmed/26537194.

Philippsen, G. S., J. S. Avaca-Crusca, et al. (2016). "Distribution patterns and impact of transposable elements in genes of green algae." Gene 594(1): 151-159. http://www.ncbi.nlm.nih.gov/pubmed/27614292.

Piriyapongsa, J., N. Polavarapu, et al. (2007). "Exonization of the LTR transposable elements in human genome." BMC Genomics 8: 291. http://www.ncbi.nlm.nih.gov/pubmed/17725822.

Piriyapongsa, J., M. T. Rutledge, et al. (2007). "Evaluating the protein coding potential of exonized transposable element sequences." Biol Direct 2: 31. http://www.ncbi.nlm.nih.gov/pubmed/18036258.

Ponicsan, S. L., J. F. Kugel, et al. (2010). "Genomic gems: SINE RNAs regulate mRNA production." Curr Opin Genet Dev 20(2): 149-155. http://www.ncbi.nlm.nih.gov/pubmed/20176473.

Schmitz, J. and J. Brosius (2011). "Exonization of transposed elements: A challenge and opportunity for evolution." Biochimie 93(11): 1928-1934. http://www.ncbi.nlm.nih.gov/pubmed/21787833.

Schwartz, S., N. Gal-Mark, et al. (2009). "Alu exonization events reveal features required for precise recognition of exons by the splicing machinery." PLoS Comput Biol 5(3): e1000300. http://www.ncbi.nlm.nih.gov/pubmed/19266014.

Sela, N., E. Kim, et al. (2010). "The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates." Genome Biol 11(6): R59. http://www.ncbi.nlm.nih.gov/pubmed/20525173.

Sela, N., B. Mersch, et al. (2010). "Characteristics of transposable element exonization within human and mouse." PLoS One 5(6): e10907. http://www.ncbi.nlm.nih.gov/pubmed/20532223.

Sorek, R. (2007). "The birth of new exons: mechanisms and evolutionary consequences." RNA 13(10): 1603-1608. http://www.ncbi.nlm.nih.gov/pubmed/17709368.

Sorek, R. (2009). "When new exons are born." Heredity 103(4): 279-280. http://www.ncbi.nlm.nih.gov/pubmed/19491926.

Volff, J. N. (2006). "Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes." Bioessays 28(9): 913-922. http://www.ncbi.nlm.nih.gov/pubmed/16937363.

Vorechovsky, I. (2010). "Transposable elements in disease-associated cryptic exons." Hum Genet 127(2): 135-154. http://www.ncbi.nlm.nih.gov/pubmed/19823873.

Wu, M., L. Li, et al. (2007). "Transposable element fragments in protein-coding regions and their contributions to human functional proteins." Gene 401(1-2): 165-171. http://www.ncbi.nlm.nih.gov/pubmed/17716834.

Zarnack, K., J. Konig, et al. (2013). "Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements." Cell 152(3): 453-466. http://www.ncbi.nlm.nih.gov/pubmed/23374342.

Zemojtel, T., T. Penzkofer, et al. (2007). "Exonization of active mouse L1s: a driver of transcriptome evolution?" BMC Genomics 8: 392. http://www.ncbi.nlm.nih.gov/pubmed/17963496.

Zhang, W., A. Edwards, et al. (2013). "Inferring the expression variability of human transposable element-derived exons by linear model analysis of deep RNA sequencing data." BMC Genomics 14: 584. http://www.ncbi.nlm.nih.gov/pubmed/23984937.