No Genome is an Island Extra References 6

 

6. Additional Cell Fusions (Endosymbiosis) in Evolutionary History.

 

·      Bacterial endosymbionts inhabit eukaryotic protists (fungi, ciliated protozoa, amoebae, etc.). (Gibson 1974; Preer, Preer et al. 1974; Horn and Wagner 2004; Kobayashi and Crouch 2009; Castillo and Pawlowska 2010; Moliner, Fournier et al. 2010; Tanifuji, Kim et al. 2011; Suzuki, Dapper et al. 2015; Serra, Fokin et al. 2016; Wang and Wu 2017; Grosser, Ramasamy et al. 2018; Silva, Kostygov et al. 2018; Zaburannyi, Grosser et al. 2018)

 

·      Endosymbionts in algae. (Fan, Guo et al. 2017)

 

·      Amoeba and other protists that are phagocytic engulf other microorganisms, and serve as hosts to bacteria like Legionella, Helicobacter, Listeria, and Mycobacterium that also infect animal cells. (Schmitz-Esser, Toenshoff et al. 2008; Schmitz-Esser, Tischler et al. 2010; Gomez-Valero and Buchrieser 2013; Yousuf, Siddiqui et al. 2013; Hoffmann, Harrison et al. 2014)

 

·      Lower animal endosymbionts. (Noel and Atibalentja 2006; Nussbaumer, Fisher et al. 2006; Harmer, Rotjan et al. 2008; Stewart and Cavanaugh 2009; Yang, Madupu et al. 2009)

 

o   Archaeal endosymbionts. (Narayanan, Krishnakumar et al. 2009)

o   Dinoflagellate endosymbionts. (Sunagawa, Wilson et al. 2009)

 

·      Insect and arthropod endosymbionts. (Aksoy, Chen et al. 1997; Niebylski, Peacock et al. 1997; Heddi, Grenier et al. 1999; Wernegreen, Ochman et al. 2000; Dale and Welburn 2001; Masui, Kuroiwa et al. 2001; von Dohlen 2001; Wernegreen 2002; Gil, Latorre et al. 2004; Marshall 2004; Tsai, Lien et al. 2004; Baumann 2005; Latorre, Gil et al. 2005; Bordenstein, Marshall et al. 2006; Frati, Negri et al. 2006; Hosokawa, Kikuchi et al. 2006; Sassera, Beninati et al. 2006; Weiss, Mouchotte et al. 2006; Feldhaar, Straka et al. 2007; Hosokawa, Kikuchi et al. 2007; Degnan and Moran 2008; Gil, Belda et al. 2008; Hosokawa, Kikuchi et al. 2008; Pontes, Babst et al. 2008; Brinza, Vinuelas et al. 2009; de Souza, Bezier et al. 2009; Degnan, Yu et al. 2009; Estes, Hearn et al. 2009; Fukatsu, Hosokawa et al. 2009; Wernegreen, Kauppinen et al. 2009; Wernegreen and Wheeler 2009; Belda, Moya et al. 2010; Clark, Karley et al. 2010; Sonthayanon, Peacock et al. 2010; Lamelas, Gosalbes et al. 2011; Leclercq, Giraud et al. 2011; Login, Balmand et al. 2011; Ratzka, Liang et al. 2011; White, Kelly et al. 2011; Gatehouse, Sutherland et al. 2012; Kuechler, Renz et al. 2012; Matsuura, Kikuchi et al. 2012; Matsuura, Kikuchi et al. 2012; Urban and Cryan 2012; Wernegreen 2012; Balmand, Lohs et al. 2013; Nakabachi, Ishida et al. 2014; Reingold, Luria et al. 2014; Campbell, Van Leuven et al. 2015; Duron, Noel et al. 2015; Campbell, Lukasik et al. 2017; Santos-Garcia, Silva et al. 2017; Duplouy and Hornett 2018; Lindsey, Bhattacharya et al. 2018; Yadav, Frazer et al. 2018)

 

·      Plant endosymbionts (bacteria and fungi). (Hayashi, Banba et al. 2010; Maunoury, Redondo-Nieto et al. 2010; Remigi, Capela et al. 2014)

 

·      Bacterial endosymbionts provide essential nutrient biosynthesis and digestive capabilities to insects and other invertebrates that feed on plant tissues. (Manzano-Marin, Oceguera-Figueroa et al. 2015; Bucher, Wolfowicz et al. 2016; Coba de la Pena, Fedorova et al. 2017)

 

·      Phototrophy in metazoa. (Johnson 2011; Baumgartner, Pavia et al. 2015)

 

·      Obligate endosymbionts. (Amann, Springer et al. 1997; Koga, Tsuchida et al. 2003; Zientz, Dandekar et al. 2004; Bordenstein and Reznikoff 2005; Wilson, Dunbar et al. 2006; Blanc, Ogata et al. 2007; Hosokawa, Kikuchi et al. 2007; Cordaux, Pichon et al. 2008; Gillespie, Williams et al. 2008; Nakayama, Yamashita et al. 2008; Pais, Lohs et al. 2008; Chafee, Funk et al. 2009; Wu, Novelli et al. 2009; Chafee, Funk et al. 2010; Ghignone, Salvioli et al. 2011; Kent, Funkhouser et al. 2011; Kuechler, Dettner et al. 2011; Lamelas, Gosalbes et al. 2011; Ratzka, Liang et al. 2011; Shigenobu and Wilson 2011; Suen, Teiling et al. 2011; Weiss, Wang et al. 2011; Ghignone, Salvioli et al. 2012; Koga, Meng et al. 2012; Koga, Bennett et al. 2013; van Schaik, Chen et al. 2013; Burke, Walden et al. 2014; Nakabachi, Ishida et al. 2014; Bennett, McCutcheon et al. 2015; Manzano-Marin, Oceguera-Figueroa et al. 2015; Woolfit, Algama et al. 2015; Mao, Yang et al. 2017; Zaburannyi, Grosser et al. 2018)

 

·      Bacterial endosymbionts confer resistance to parasites and viruses (Hedges, Brownlie et al. 2008; Yadav, Frazer et al. 2018)

 

·      Endosymbiont DNA integrates in the nuclear genome. (Feldhaar and Gross 2009)

Aphid genomes acquired sequences from the bacterial endosymbiont Buchnera (Nikoh and Nakabachi 2009). In the widespread and well-studied arthropod-Wolbachia system of oocyte endosymbiosis (Nikoh, Tanaka et al. 2008; Kaur, Siozios et al. 2017; Signor 2017), bacterial sequences have entered the genomes of mosquitoes (Klasson, Kambris et al. 2009; Woolfit, Iturbe-Ormaetxe et al. 2009), tsetse flies (Glossina) (Brelsfoard, Tsiamis et al. 2014), beetles (Nikoh, Tanaka et al. 2008; Aikawa, Anbutsu et al. 2009), wasps, honeybees, ticks and pathogenic filarial nematode worms (Dunning Hotopp, Clark et al. 2007; McNulty, Foster et al. 2010), as well as numerous Drosophila species (Salzberg, Hotopp et al. 2005; Dunning Hotopp, Clark et al. 2007).

 

·      Microsporidia. (Lee, Corradi et al. 2010; Texier, Vidau et al. 2010; Koestler and Ebersberger 2011; Peyretaillade, El Alaoui et al. 2011; Selman, Pombert et al. 2011; Pombert, Selman et al. 2012; James, Pelin et al. 2013; Pan, Xu et al. 2013; Panek, El Alaoui et al. 2014; Parisot, Pelin et al. 2014; Shi, Guo et al. 2014; Corradi 2015; Desjardins, Sanscrainte et al. 2015; Pombert, Haag et al. 2015)

 

 

REFERENCES

 

Aikawa, T., H. Anbutsu, et al. (2009). "Longicorn beetle that vectors pinewood nematode carries many Wolbachia genes on an autosome." Proc Biol Sci 276(1674): 3791-3798. http://www.ncbi.nlm.nih.gov/pubmed/19692404.

Aksoy, S., X. Chen, et al. (1997). "Phylogeny and potential transmission routes of midgut-associated endosymbionts of tsetse (Diptera:Glossinidae)." Insect Mol Biol 6(2): 183-190. http://www.ncbi.nlm.nih.gov/pubmed/9099582.

Amann, R., N. Springer, et al. (1997). "Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp." Appl Environ Microbiol 63(1): 115-121. http://www.ncbi.nlm.nih.gov/pubmed/8979345.

Balmand, S., C. Lohs, et al. (2013). "Tissue distribution and transmission routes for the tsetse fly endosymbionts." J Invertebr Pathol 112 Suppl: S116-122. http://www.ncbi.nlm.nih.gov/pubmed/22537833.

Baumann, P. (2005). "Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects." Annu Rev Microbiol 59: 155-189. http://www.ncbi.nlm.nih.gov/pubmed/16153167.

Baumgartner, F. A., H. Pavia, et al. (2015). "Acquired phototrophy through retention of functional chloroplasts increases growth efficiency of the sea slug Elysia viridis." PLoS One 10(4): e0120874. http://www.ncbi.nlm.nih.gov/pubmed/25830355.

Belda, E., A. Moya, et al. (2010). "Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies." BMC Genomics 11: 449. http://www.ncbi.nlm.nih.gov/pubmed/20649993.

Bennett, G. M., J. P. McCutcheon, et al. (2015). "Lineage-Specific Patterns of Genome Deterioration in Obligate Symbionts of Sharpshooter Leafhoppers." Genome Biol Evol 8(1): 296-301. http://www.ncbi.nlm.nih.gov/pubmed/26260652.

Blanc, G., H. Ogata, et al. (2007). "Lateral gene transfer between obligate intracellular bacteria: evidence from the Rickettsia massiliae genome." Genome Res 17(11): 1657-1664. http://www.ncbi.nlm.nih.gov/pubmed/17916642.

Bordenstein, S. R., M. L. Marshall, et al. (2006). "The tripartite associations between bacteriophage, Wolbachia, and arthropods." PLoS Pathog 2(5): e43. http://www.ncbi.nlm.nih.gov/pubmed/16710453.

Bordenstein, S. R. and W. S. Reznikoff (2005). "Mobile DNA in obligate intracellular bacteria." Nat Rev Microbiol 3(9): 688-699. http://www.ncbi.nlm.nih.gov/pubmed/16138097.

Brelsfoard, C., G. Tsiamis, et al. (2014). "Presence of Extensive Wolbachia Symbiont Insertions Discovered in the Genome of Its Host Glossina morsitans morsitans." PLoS Negl Trop Dis 8(4): e2728. http://www.ncbi.nlm.nih.gov/pubmed/24763283.

Brinza, L., J. Vinuelas, et al. (2009). "Systemic analysis of the symbiotic function of Buchnera aphidicola, the primary endosymbiont of the pea aphid Acyrthosiphon pisum." C R Biol 332(11): 1034-1049. http://www.ncbi.nlm.nih.gov/pubmed/19909925.

Bucher, M., I. Wolfowicz, et al. (2016). "Development and Symbiosis Establishment in the Cnidarian Endosymbiosis Model Aiptasia sp." Sci Rep 6: 19867. http://www.ncbi.nlm.nih.gov/pubmed/26804034.

Burke, G. R., K. K. Walden, et al. (2014). "Widespread genome reorganization of an obligate virus mutualist." PLoS Genet 10(9): e1004660. http://www.ncbi.nlm.nih.gov/pubmed/25232843.

Campbell, M. A., P. Lukasik, et al. (2017). "Idiosyncratic Genome Degradation in a Bacterial Endosymbiont of Periodical Cicadas." Curr Biol 27(22): 3568-3575 e3563. http://www.ncbi.nlm.nih.gov/pubmed/29129532.

Campbell, M. A., J. T. Van Leuven, et al. (2015). "Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia." Proc Natl Acad Sci U S A 112(33): 10192-10199. http://www.ncbi.nlm.nih.gov/pubmed/26286984.

Castillo, D. M. and T. E. Pawlowska (2010). "Molecular evolution in bacterial endosymbionts of fungi." Mol Biol Evol 27(3): 622-636. http://www.ncbi.nlm.nih.gov/pubmed/19923192.

Chafee, M. E., D. J. Funk, et al. (2009). "Lateral phage transfer in obligate intracellular bacteria (Wolbachia): Verification from natural populations." Mol Biol Evol. http://www.ncbi.nlm.nih.gov/pubmed/19906794.

Chafee, M. E., D. J. Funk, et al. (2010). "Lateral phage transfer in obligate intracellular bacteria (wolbachia): verification from natural populations." Mol Biol Evol 27(3): 501-505. http://www.ncbi.nlm.nih.gov/pubmed/19906794.

Clark, E. L., A. J. Karley, et al. (2010). "Insect endosymbionts: manipulators of insect herbivore trophic interactions?" Protoplasma 244(1-4): 25-51. http://www.ncbi.nlm.nih.gov/pubmed/20495935.

Coba de la Pena, T., E. Fedorova, et al. (2017). "The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle?" Front Plant Sci 8: 2229. http://www.ncbi.nlm.nih.gov/pubmed/29403508.

Cordaux, R., S. Pichon, et al. (2008). "Intense transpositional activity of insertion sequences in an ancient obligate endosymbiont." Mol Biol Evol 25(9): 1889-1896. http://www.ncbi.nlm.nih.gov/pubmed/18562339.

Corradi, N. (2015). "Microsporidia: Eukaryotic Intracellular Parasites Shaped by Gene Loss and Horizontal Gene Transfers." Annu Rev Microbiol 69: 167-183. http://www.ncbi.nlm.nih.gov/pubmed/26195306.

Dale, C. and S. C. Welburn (2001). "The endosymbionts of tsetse flies: manipulating host-parasite interactions." Int J Parasitol 31(5-6): 628-631. http://www.ncbi.nlm.nih.gov/pubmed/11334953.

de Souza, D. J., A. Bezier, et al. (2009). "Blochmannia endosymbionts improve colony growth and immune defence in the ant Camponotus fellah." BMC Microbiol 9: 29. http://www.ncbi.nlm.nih.gov/pubmed/19200360.

Degnan, P. H. and N. A. Moran (2008). "Diverse phage-encoded toxins in a protective insect endosymbiont." Appl Environ Microbiol 74(21): 6782-6791. http://www.ncbi.nlm.nih.gov/pubmed/18791000.

Degnan, P. H., Y. Yu, et al. (2009). "Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors." Proc Natl Acad Sci U S A 106(22): 9063-9068. http://www.ncbi.nlm.nih.gov/pubmed/19451630.

Desjardins, C. A., N. D. Sanscrainte, et al. (2015). "Contrasting host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes." Nat Commun 6: 7121. http://www.ncbi.nlm.nih.gov/pubmed/25968466.

Dunning Hotopp, J. C., M. E. Clark, et al. (2007). "Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes." Science 317(5845): 1753-1756. http://www.ncbi.nlm.nih.gov/pubmed/17761848.

Duplouy, A. and E. A. Hornett (2018). "Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts." PeerJ 6: e4629. http://www.ncbi.nlm.nih.gov/pubmed/29761037.

Duron, O., V. Noel, et al. (2015). "The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii." PLoS Pathog 11(5): e1004892. http://www.ncbi.nlm.nih.gov/pubmed/25978383.

Estes, A. M., D. J. Hearn, et al. (2009). "The olive fly endosymbiont, "Candidatus Erwinia dacicola," switches from an intracellular existence to an extracellular existence during host insect development." Appl Environ Microbiol 75(22): 7097-7106. http://www.ncbi.nlm.nih.gov/pubmed/19767463.

Fan, W., W. Guo, et al. (2017). "Multiple origins of endosymbionts in Chlorellaceae with no reductive effects on the plastid or mitochondrial genomes." Sci Rep 7(1): 10101. http://www.ncbi.nlm.nih.gov/pubmed/28855622.

Feldhaar, H. and R. Gross (2009). "Genome degeneration affects both extracellular and intracellular bacterial endosymbionts." J Biol Chem 8(3): 31. http://www.ncbi.nlm.nih.gov/pubmed/19435469.

Feldhaar, H., J. Straka, et al. (2007). "Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia." BMC Biol 5: 48. http://www.ncbi.nlm.nih.gov/pubmed/17971224.

Frati, F., I. Negri, et al. (2006). "Ultrastructural and molecular identification of a new Rickettsia endosymbiont in the springtail Onychiurus sinensis (Hexapoda, Collembola)." J Invertebr Pathol 93(3): 150-156. http://www.ncbi.nlm.nih.gov/pubmed/16934288.

Fukatsu, T., T. Hosokawa, et al. (2009). "Intestinal endocellular symbiotic bacterium of the macaque louse Pedicinus obtusus: Distinct endosymbiont origins in anthropoid primate lice and the old world monkey louse." Appl Environ Microbiol 75(11): 3796-3799. http://www.ncbi.nlm.nih.gov/pubmed/19304816.

Gatehouse, L. N., P. Sutherland, et al. (2012). "Molecular and histological characterization of primary (betaproteobacteria) and secondary (gammaproteobacteria) endosymbionts of three mealybug species." Appl Environ Microbiol 78(4): 1187-1197. http://www.ncbi.nlm.nih.gov/pubmed/22156418.

Ghignone, S., A. Salvioli, et al. (2011). "The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions." Isme J. http://www.ncbi.nlm.nih.gov/pubmed/21866182.

Ghignone, S., A. Salvioli, et al. (2012). "The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions." Isme J 6(1): 136-145. http://www.ncbi.nlm.nih.gov/pubmed/21866182.

Gibson, I. (1974). "The endosymbionts of Paramecium." CRC Crit Rev Microbiol 3(3): 243-273. http://www.ncbi.nlm.nih.gov/pubmed/4605256.

Gil, R., E. Belda, et al. (2008). "Massive presence of insertion sequences in the genome of SOPE, the primary endosymbiont of the rice weevil Sitophilus oryzae." Int Microbiol 11(1): 41-48. http://www.ncbi.nlm.nih.gov/pubmed/18683631.

Gil, R., A. Latorre, et al. (2004). "Bacterial endosymbionts of insects: insights from comparative genomics." Environ Microbiol 6(11): 1109-1122. http://www.ncbi.nlm.nih.gov/pubmed/15479245.

Gillespie, J. J., K. Williams, et al. (2008). "Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life." PLoS One 3(4): e2018. http://www.ncbi.nlm.nih.gov/pubmed/19194535.

Gomez-Valero, L. and C. Buchrieser (2013). "Genome dynamics in Legionella: the basis of versatility and adaptation to intracellular replication." Cold Spring Harb Perspect Med 3(6). http://www.ncbi.nlm.nih.gov/pubmed/23732852.

Grosser, K., P. Ramasamy, et al. (2018). "More than the "Killer Trait": Infection with the Bacterial Endosymbiont Caedibacter taeniospiralis Causes Transcriptomic Modulation in Paramecium Host." Genome Biol Evol 10(2): 646-656. http://www.ncbi.nlm.nih.gov/pubmed/29390087.

Harmer, T. L., R. D. Rotjan, et al. (2008). "Free-living tube worm endosymbionts found at deep-sea vents." Appl Environ Microbiol 74(12): 3895-3898. http://www.ncbi.nlm.nih.gov/pubmed/18408062.

Hayashi, T., M. Banba, et al. (2010). "A dominant function of CCaMK in intracellular accommodation of bacterial and fungal endosymbionts." Plant J 63(1): 141-154. http://www.ncbi.nlm.nih.gov/pubmed/20409002.

Heddi, A., A. M. Grenier, et al. (1999). "Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia." Proc Natl Acad Sci U S A 96(12): 6814-6819. http://www.ncbi.nlm.nih.gov/pubmed/10359795.

Hedges, L. M., J. C. Brownlie, et al. (2008). "Wolbachia and virus protection in insects." Science 322(5902): 702. http://www.ncbi.nlm.nih.gov/pubmed/18974344.

Hoffmann, C., C. F. Harrison, et al. (2014). "The natural alternative: protozoa as cellular models for Legionella infection." Cell Microbiol 16(1): 15-26. http://www.ncbi.nlm.nih.gov/pubmed/24168696.

Horn, M. and M. Wagner (2004). "Bacterial endosymbionts of free-living amoebae." J Eukaryot Microbiol 51(5): 509-514. http://www.ncbi.nlm.nih.gov/pubmed/15537084.

Hosokawa, T., Y. Kikuchi, et al. (2006). "Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria." PLoS Biol 4(10): e337. http://www.ncbi.nlm.nih.gov/pubmed/17032065.

Hosokawa, T., Y. Kikuchi, et al. (2007). "Obligate symbiont involved in pest status of host insect." Proc Biol Sci 274(1621): 1979-1984. http://www.ncbi.nlm.nih.gov/pubmed/17567556.

Hosokawa, T., Y. Kikuchi, et al. (2008). "Symbiont acquisition alters behaviour of stinkbug nymphs." Biol Lett 4(1): 45-48. http://www.ncbi.nlm.nih.gov/pubmed/18055411.

James, T. Y., A. Pelin, et al. (2013). "Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia." Curr Biol 23(16): 1548-1553. http://www.ncbi.nlm.nih.gov/pubmed/23932404.

Johnson, M. D. (2011). "The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles." Photosynth Res 107(1): 117-132. http://www.ncbi.nlm.nih.gov/pubmed/20405214.

Kaur, R., S. Siozios, et al. (2017). "Insertion sequence polymorphism and genomic rearrangements uncover hidden Wolbachia diversity in Drosophila suzukii and D. subpulchrella." Sci Rep 7(1): 14815. http://www.ncbi.nlm.nih.gov/pubmed/29093474.

Kent, B. N., L. J. Funkhouser, et al. (2011). "Evolutionary genomics of a temperate bacteriophage in an obligate intracellular bacteria (Wolbachia)." PLoS One 6(9): e24984. http://www.ncbi.nlm.nih.gov/pubmed/21949820.

Klasson, L., Z. Kambris, et al. (2009). "Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti." BMC Genomics 10: 33. http://www.ncbi.nlm.nih.gov/pubmed/19154594.

Kobayashi, D. Y. and J. A. Crouch (2009). "Bacterial/Fungal interactions: from pathogens to mutualistic endosymbionts." Annu Rev Phytopathol 47: 63-82. http://www.ncbi.nlm.nih.gov/pubmed/19400650.

Koestler, T. and I. Ebersberger (2011). "Zygomycetes, microsporidia, and the evolutionary ancestry of sex determination." Genome Biol Evol 3: 186-194. http://www.ncbi.nlm.nih.gov/pubmed/21307298.

Koga, R., G. M. Bennett, et al. (2013). "Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage." Environ Microbiol 15(7): 2073-2081. http://www.ncbi.nlm.nih.gov/pubmed/23574391.

Koga, R., X. Y. Meng, et al. (2012). "Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface." Proc Natl Acad Sci U S A 109(20): E1230-1237. http://www.ncbi.nlm.nih.gov/pubmed/22517738.

Koga, R., T. Tsuchida, et al. (2003). "Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid." Proc Biol Sci 270(1533): 2543-2550. http://www.ncbi.nlm.nih.gov/pubmed/14728775.

Kuechler, S. M., K. Dettner, et al. (2011). "Characterization of an obligate intracellular bacterium in the midgut epithelium of the bulrush bug Chilacis typhae (Heteroptera, Lygaeidae, Artheneinae)." Appl Environ Microbiol 77(9): 2869-2876. http://www.ncbi.nlm.nih.gov/pubmed/21378044.

Kuechler, S. M., P. Renz, et al. (2012). "Diversity of symbiotic organs and bacterial endosymbionts of lygaeoid bugs of the families blissidae and lygaeidae (hemiptera: heteroptera: lygaeoidea)." Appl Environ Microbiol 78(8): 2648-2659. http://www.ncbi.nlm.nih.gov/pubmed/22307293.

Lamelas, A., M. J. Gosalbes, et al. (2011). "Serratia symbiotica from the Aphid Cinara cedri: A Missing Link from Facultative to Obligate Insect Endosymbiont." PLoS Genet 7(11): e1002357. http://www.ncbi.nlm.nih.gov/pubmed/22102823.

Latorre, A., R. Gil, et al. (2005). "Chromosomal stasis versus plasmid plasticity in aphid endosymbiont Buchnera aphidicola." Heredity 95(5): 339-347. http://www.ncbi.nlm.nih.gov/pubmed/16118664.

Leclercq, S., I. Giraud, et al. (2011). "Remarkable abundance and evolution of mobile group II introns in Wolbachia bacterial endosymbionts." Mol Biol Evol 28(1): 685-697. http://www.ncbi.nlm.nih.gov/pubmed/20819906.

Lee, S. C., N. Corradi, et al. (2010). "Evolution of the sex-related locus and genomic features shared in microsporidia and fungi." PLoS One 5(5): e10539. http://www.ncbi.nlm.nih.gov/pubmed/20479876.

Lindsey, A. R. I., T. Bhattacharya, et al. (2018). "Conflict in the Intracellular Lives of Endosymbionts and Viruses: A Mechanistic Look at Wolbachia-Mediated Pathogen-blocking." Viruses 10(4). http://www.ncbi.nlm.nih.gov/pubmed/29561780.

Login, F. H., S. Balmand, et al. (2011). "Antimicrobial peptides keep insect endosymbionts under control." Science 334(6054): 362-365. http://www.ncbi.nlm.nih.gov/pubmed/22021855.

Manzano-Marin, A., A. Oceguera-Figueroa, et al. (2015). "Solving a Bloody Mess: B-Vitamin Independent Metabolic Convergence among Gammaproteobacterial Obligate Endosymbionts from Blood-Feeding Arthropods and the Leech Haementeria officinalis." Genome Biol Evol 7(10): 2871-2884. http://www.ncbi.nlm.nih.gov/pubmed/26454017.

Mao, M., X. Yang, et al. (2017). "Comparative Genomics of the Dual-Obligate Symbionts from the Treehopper, Entylia carinata (Hemiptera: Membracidae), Provide Insight into the Origins and Evolution of an Ancient Symbiosis." Genome Biol Evol 9(6): 1803-1815. http://www.ncbi.nlm.nih.gov/pubmed/28854637.

Marshall, J. L. (2004). "The Allonemobius-Wolbachia host-endosymbiont system: evidence for rapid speciation and against reproductive isolation driven by cytoplasmic incompatibility." Evolution 58(11): 2409-2425. http://www.ncbi.nlm.nih.gov/pubmed/15612285.

Masui, S., H. Kuroiwa, et al. (2001). "Bacteriophage WO and virus-like particles in Wolbachia, an endosymbiont of arthropods." Biochem Biophys Res Commun 283(5): 1099-1104. http://www.ncbi.nlm.nih.gov/pubmed/11355885.

Matsuura, Y., Y. Kikuchi, et al. (2012). "Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs." Isme J 6(2): 397-409. http://www.ncbi.nlm.nih.gov/pubmed/21814289.

Matsuura, Y., Y. Kikuchi, et al. (2012). "Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods." Appl Environ Microbiol 78(12): 4149-4156. http://www.ncbi.nlm.nih.gov/pubmed/22504806.

Maunoury, N., M. Redondo-Nieto, et al. (2010). "Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches." PLoS One 5(3): e9519. http://www.ncbi.nlm.nih.gov/pubmed/20209049.

McNulty, S. N., J. M. Foster, et al. (2010). "Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer." PLoS One 5(6): e11029. http://www.ncbi.nlm.nih.gov/pubmed/20543958.

Moliner, C., P. E. Fournier, et al. (2010). "Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution." FEMS Microbiol Rev 34(3): 281-294. http://www.ncbi.nlm.nih.gov/pubmed/20132312.

Nakabachi, A., K. Ishida, et al. (2014). "Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont." Curr Biol 24(14): R640-R641. http://www.ncbi.nlm.nih.gov/pubmed/25050957.

Nakayama, K., A. Yamashita, et al. (2008). "The Whole-genome sequencing of the obligate intracellular bacterium Orientia tsutsugamushi revealed massive gene amplification during reductive genome evolution." DNA Res 15(4): 185-199. http://www.ncbi.nlm.nih.gov/pubmed/18508905.

Narayanan, N., B. Krishnakumar, et al. (2009). "Methanosaeta sp., the major archaeal endosymbiont of Metopus es." Res Microbiol 160(8): 600-607. http://www.ncbi.nlm.nih.gov/pubmed/19695326`.

Niebylski, M. L., M. G. Peacock, et al. (1997). "Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella." Appl Environ Microbiol 63(10): 3933-3940. http://www.ncbi.nlm.nih.gov/pubmed/9327558.

Nikoh, N. and A. Nakabachi (2009). "Aphids acquired symbiotic genes via lateral gene transfer." BMC Biol 7: 12. http://www.ncbi.nlm.nih.gov/pubmed/19284544.

Nikoh, N., K. Tanaka, et al. (2008). "Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes." Genome Res 18(2): 272-280. http://www.ncbi.nlm.nih.gov/pubmed/18073380.

Noel, G. R. and N. Atibalentja (2006). "'Candidatus Paenicardinium endonii', an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes." Int J Syst Evol Microbiol 56(Pt 7): 1697-1702. http://www.ncbi.nlm.nih.gov/pubmed/16825653.

Nussbaumer, A. D., C. R. Fisher, et al. (2006). "Horizontal endosymbiont transmission in hydrothermal vent tubeworms." Nature 441(7091): 345-348. http://www.ncbi.nlm.nih.gov/pubmed/16710420.

Pais, R., C. Lohs, et al. (2008). "The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly." Appl Environ Microbiol 74(19): 5965-5974. http://www.ncbi.nlm.nih.gov/pubmed/18689507.

Pan, G., J. Xu, et al. (2013). "Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation." BMC Genomics 14(1): 186. http://www.ncbi.nlm.nih.gov/pubmed/23496955.

Panek, J., H. El Alaoui, et al. (2014). "Hijacking of host cellular functions by an intracellular parasite, the microsporidian Anncaliia algerae." PLoS One 9(6): e100791. http://www.ncbi.nlm.nih.gov/pubmed/24967735.

Parisot, N., A. Pelin, et al. (2014). "Microsporidian genomes harbor a diverse array of transposable elements that demonstrate an ancestry of horizontal exchange with metazoans." Genome Biol Evol 6(9): 2289-2300. http://www.ncbi.nlm.nih.gov/pubmed/25172905.

Peyretaillade, E., H. El Alaoui, et al. (2011). "Extreme reduction and compaction of microsporidian genomes." Res Microbiol 162(6): 598-606. http://www.ncbi.nlm.nih.gov/pubmed/21426934.

Pombert, J. F., K. L. Haag, et al. (2015). "The Ordospora colligata genome: Evolution of extreme reduction in microsporidia and host-to-parasite horizontal gene transfer." MBio 6(1). http://www.ncbi.nlm.nih.gov/pubmed/25587016.

Pombert, J. F., M. Selman, et al. (2012). "Gain and loss of multiple functionally related, horizontally transferred genes in the reduced genomes of two microsporidian parasites." Proc Natl Acad Sci U S A 109(31): 12638-12643. http://www.ncbi.nlm.nih.gov/pubmed/22802648.

Pontes, M. H., M. Babst, et al. (2008). "Quorum sensing primes the oxidative stress response in the insect endosymbiont, Sodalis glossinidius." PLoS One 3(10): e3541. http://www.ncbi.nlm.nih.gov/pubmed/18958153.

Preer, J. R., Jr., L. B. Preer, et al. (1974). "Kappa and other endosymbionts in Paramecium aurelia." Bacteriol Rev 38(2): 113-163. http://www.ncbi.nlm.nih.gov/pubmed/4599970.

Ratzka, C., C. Liang, et al. (2011). "Immune response of the ant Camponotus floridanus against pathogens and its obligate mutualistic endosymbiont." Insect Biochem Mol Biol 41(8): 529-536. http://www.ncbi.nlm.nih.gov/pubmed/21440063.

Reingold, V., N. Luria, et al. (2014). "Adenine methylation may contribute to endosymbiont selection in a clonal aphid population." BMC Genomics 15: 999. http://www.ncbi.nlm.nih.gov/pubmed/25406741.

Remigi, P., D. Capela, et al. (2014). "Transient Hypermutagenesis Accelerates the Evolution of Legume Endosymbionts following Horizontal Gene Transfer." PLoS Biol 12(9): e1001942. http://www.ncbi.nlm.nih.gov/pubmed/25181317.

Salzberg, S. L., J. C. Hotopp, et al. (2005). "Serendipitous discovery of Wolbachia genomes in multiple Drosophila species." Genome Biol 6(3): R23. http://www.ncbi.nlm.nih.gov/pubmed/15774024.

Santos-Garcia, D., F. J. Silva, et al. (2017). "The All-Rounder Sodalis: A New Bacteriome-Associated Endosymbiont of the Lygaeoid Bug Henestaris halophilus (Heteroptera: Henestarinae) and a Critical Examination of Its Evolution." Genome Biol Evol 9(10): 2893-2910. http://www.ncbi.nlm.nih.gov/pubmed/29036401.

Sassera, D., T. Beninati, et al. (2006). "'Candidatus Midichloria mitochondrii', an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle." Int J Syst Evol Microbiol 56(Pt 11): 2535-2540. http://www.ncbi.nlm.nih.gov/pubmed/17082386.

Schmitz-Esser, S., P. Tischler, et al. (2010). "The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" reveals common mechanisms for host cell interaction among amoeba-associated bacteria." J Bacteriol 192(4): 1045-1057. http://www.ncbi.nlm.nih.gov/pubmed/20023027.

Schmitz-Esser, S., E. R. Toenshoff, et al. (2008). "Diversity of bacterial endosymbionts of environmental acanthamoeba isolates." Appl Environ Microbiol 74(18): 5822-5831. http://www.ncbi.nlm.nih.gov/pubmed/18641160.

Selman, M., J. F. Pombert, et al. (2011). "Acquisition of an animal gene by microsporidian intracellular parasites." Curr Biol 21(15): R576-577. http://www.ncbi.nlm.nih.gov/pubmed/21820617.

Serra, V., S. I. Fokin, et al. (2016). ""Candidatus Gortzia shahrazadis", a Novel Endosymbiont of Paramecium multimicronucleatum and a Revision of the Biogeographical Distribution of Holospora-Like Bacteria." Front Microbiol 7: 1704. http://www.ncbi.nlm.nih.gov/pubmed/27867371.

Shi, W., Y. Guo, et al. (2014). "Unveiling the mechanism by which microsporidian parasites prevent locust swarm behavior." Proc Natl Acad Sci U S A 111(4): 1343-1348. http://www.ncbi.nlm.nih.gov/pubmed/24474758.

Shigenobu, S. and A. C. Wilson (2011). "Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont." Cell Mol Life Sci 68(8): 1297-1309. http://www.ncbi.nlm.nih.gov/pubmed/21390549.

Signor, S. (2017). "Population genomics of Wolbachia and mtDNA in Drosophila simulans from California." Sci Rep 7(1): 13369. http://www.ncbi.nlm.nih.gov/pubmed/29042606.

Silva, F. M., A. Y. Kostygov, et al. (2018). "The reduced genome of Candidatus Kinetoplastibacterium sorsogonicusi, the endosymbiont of Kentomonas sorsogonicus (Trypanosomatidae): loss of the haem-synthesis pathway." Parasitology: 1-7. http://www.ncbi.nlm.nih.gov/pubmed/29642956.

Sonthayanon, P., S. J. Peacock, et al. (2010). "High rates of homologous recombination in the mite endosymbiont and opportunistic human pathogen Orientia tsutsugamushi." PLoS Negl Trop Dis 4(7): e752. http://www.ncbi.nlm.nih.gov/pubmed/20651929.

Stewart, F. J. and C. M. Cavanaugh (2009). "Pyrosequencing analysis of endosymbiont population structure: co-occurrence of divergent symbiont lineages in a single vesicomyid host clam." Environ Microbiol 11(8): 2136-2147. http://www.ncbi.nlm.nih.gov/pubmed/19397674.

Suen, G., C. Teiling, et al. (2011). "The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle." PLoS Genet 7(2): e1002007. http://www.ncbi.nlm.nih.gov/pubmed/21347285.

Sunagawa, S., E. C. Wilson, et al. (2009). "Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont." BMC Genomics 10: 258. http://www.ncbi.nlm.nih.gov/pubmed/19500365.

Suzuki, H., A. L. Dapper, et al. (2015). "Draft Genome Sequence of Caedibacter varicaedens, a Kappa Killer Endosymbiont Bacterium of the Ciliate Paramecium biaurelia." Genome Announc 3(6). http://www.ncbi.nlm.nih.gov/pubmed/26543129.

Tanifuji, G., E. Kim, et al. (2011). "Genomic characterization of Neoparamoeba pemaquidensis (Amoebozoa) and its kinetoplastid endosymbiont." Eukaryot Cell 10(8): 1143-1146. http://www.ncbi.nlm.nih.gov/pubmed/21666073.

Texier, C., C. Vidau, et al. (2010). "Microsporidia: a model for minimal parasite-host interactions." Curr Opin Microbiol. http://www.ncbi.nlm.nih.gov/pubmed/20542726.

Tsai, K. H., J. C. Lien, et al. (2004). "Molecular (sub) grouping of endosymbiont Wolbachia infection among mosquitoes of Taiwan." J Med Entomol 41(4): 677-683. http://www.ncbi.nlm.nih.gov/pubmed/15311460.

Urban, J. M. and J. R. Cryan (2012). "Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea)." BMC Evol Biol 12: 87. http://www.ncbi.nlm.nih.gov/pubmed/22697166.

van Schaik, E. J., C. Chen, et al. (2013). "Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii." Nat Rev Microbiol 11(8): 561-573. http://www.ncbi.nlm.nih.gov/pubmed/23797173.

von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. (2001). "Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts." Nature 412: 433–436. .

Wang, Z. and M. Wu (2017). "Comparative Genomic Analysis of Acanthamoeba Endosymbionts Highlights the Role of Amoebae as a "Melting Pot" Shaping the Rickettsiales Evolution." Genome Biol Evol 9(11): 3214-3224. http://www.ncbi.nlm.nih.gov/pubmed/29177480.

Weiss, B. L., R. Mouchotte, et al. (2006). "Interspecific transfer of bacterial endosymbionts between tsetse fly species: infection establishment and effect on host fitness." Appl Environ Microbiol 72(11): 7013-7021. http://www.ncbi.nlm.nih.gov/pubmed/16950907.

Weiss, B. L., J. Wang, et al. (2011). "Tsetse Immune System Maturation Requires the Presence of Obligate Symbionts in Larvae." PLoS Biol 9(5): e1000619. .

Wernegreen, J. J. (2002). "Genome evolution in bacterial endosymbionts of insects." Nat Rev Genet 3(11): 850-861. http://www.ncbi.nlm.nih.gov/pubmed/12415315.

Wernegreen, J. J. (2012). "Strategies of genomic integration within insect-bacterial mutualisms." Biol Bull 223(1): 112-122. http://www.ncbi.nlm.nih.gov/pubmed/22983037.

Wernegreen, J. J., S. N. Kauppinen, et al. (2009). "One nutritional symbiosis begat another: phylogenetic evidence that the ant tribe Camponotini acquired Blochmannia by tending sap-feeding insects." BMC Evol Biol 9: 292. http://www.ncbi.nlm.nih.gov/pubmed/20015388.

Wernegreen, J. J., H. Ochman, et al. (2000). "Decoupling of genome size and sequence divergence in a symbiotic bacterium." J Bacteriol 182(13): 3867-3869. http://www.ncbi.nlm.nih.gov/pubmed/10851009.

Wernegreen, J. J. and D. E. Wheeler (2009). "Remaining flexible in old alliances: functional plasticity in constrained mutualisms." DNA Cell Biol 28(8): 371-382. http://www.ncbi.nlm.nih.gov/pubmed/19435425.

White, J. A., S. E. Kelly, et al. (2011). "Endosymbiont costs and benefits in a parasitoid infected with both Wolbachia and Cardinium." Heredity 106(4): 585-591. http://www.ncbi.nlm.nih.gov/pubmed/20606691.

Wilson, A. C., H. E. Dunbar, et al. (2006). "A dual-genome microarray for the pea aphid, Acyrthosiphon pisum, and its obligate bacterial symbiont, Buchnera aphidicola." BMC Genomics 7: 50. http://www.ncbi.nlm.nih.gov/pubmed/16536873.

Woolfit, M., M. Algama, et al. (2015). "Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis." PLoS One 10(3): e0118595. http://www.ncbi.nlm.nih.gov/pubmed/25739023.

Woolfit, M., I. Iturbe-Ormaetxe, et al. (2009). "An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis." Mol Biol Evol 26(2): 367-374. http://www.ncbi.nlm.nih.gov/pubmed/18988686.

Wu, B., J. Novelli, et al. (2009). "The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target." PLoS Negl Trop Dis 3(7): e475. http://www.ncbi.nlm.nih.gov/pubmed/19597542.

Yadav, S., J. Frazer, et al. (2018). "Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection." PLoS One 13(2): e0192183. http://www.ncbi.nlm.nih.gov/pubmed/29466376.

Yang, J. C., R. Madupu, et al. (2009). "The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms)." PLoS One 4(7): e6085. http://www.ncbi.nlm.nih.gov/pubmed/19568419.

Yousuf, F. A., R. Siddiqui, et al. (2013). "Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila." Parasit Vectors 6: 169. http://www.ncbi.nlm.nih.gov/pubmed/23742105.

Zaburannyi, N., K. Grosser, et al. (2018). "Draft Genome Sequence and Annotation of the Obligate Bacterial Endosymbiont Caedibacter taeniospiralis, Causative Agent of the Killer Phenotype in Paramecium tetraurelia." Genome Announc 6(3). http://www.ncbi.nlm.nih.gov/pubmed/29348333.

Zientz, E., T. Dandekar, et al. (2004). "Metabolic interdependence of obligate intracellular bacteria and their insect hosts." Microbiol Mol Biol Rev 68(4): 745-770. http://www.ncbi.nlm.nih.gov/pubmed/15590782.