[ James A. Shapiro ] James A. Shapiro


Genome Size

(Wernegreen, Ochman et al. 2000; Kidwell 2002; Bennett, Leitch et al. 2003; Ozkan, Tuna et al. 2003; Baack, Whitney et al. 2005; Greilhuber, Dolezel et al. 2005; Vitte and Panaud 2005; Hawkins, Kim et al. 2006; Neumann, Koblizkova et al. 2006; Bosco, Campbell et al. 2007; Gregory, Nicol et al. 2007; Leitch, Beaulieu et al. 2007; Oliver, Petrov et al. 2007; Organ, Shedlock et al. 2007; Zuccolo, Sebastian et al. 2007; Gregory and Johnston 2008; Smarda, Bures et al. 2008; Tsutsui, Suarez et al. 2008; Chrtek, Zahradnicek et al. 2009; Hou and Lin 2009; Hou and Lin 2009; Isambert and Stein 2009; Leitch, Kahandawala et al. 2009; Morse, Peterson et al. 2009; Organ and Shedlock 2009; Smith and Gregory 2009; Kraaijeveld 2010; Nakabachi, Koshikawa et al. 2010; Zedek, Smerda et al. 2010; Arensburger, Hice et al. 2011; Arensburger, Hice et al. 2011; Dufresne and Jeffery 2011; Tenaillon, Hufford et al. 2011; Tollis and Boissinot 2011; Yotoko, Dornelas et al. 2011; Friar, Goldman et al. 2012; Zhang and Dawe 2012) (Park, Park et al. 2012).

 

 

REFERENCES

 

Arensburger, P., R. H. Hice, et al. (2011). "The mosquito Aedes aegypti has a large genome size and a high transposable element load but contains a low proportion of transposon-specific piRNAs." BMC Genomics 12(1): 606. http://www.ncbi.nlm.nih.gov/pubmed/22171608.

Arensburger, P., R. H. Hice, et al. (2011). "The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs." BMC Genomics 12: 606. http://www.ncbi.nlm.nih.gov/pubmed/22171608.

Baack, E. J., K. D. Whitney, et al. (2005). "Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species." New Phytol 167(2): 623-630. http://www.ncbi.nlm.nih.gov/pubmed/15998412.

Bennett, M. D., I. J. Leitch, et al. (2003). "Comparisons with Caenorhabditis (approximately 100 Mb) and Drosophila (approximately 175 Mb) using flow cytometry show genome size in Arabidopsis to be approximately 157 Mb and thus approximately 25% larger than the Arabidopsis genome initiative estimate of approximately 125 Mb." Ann Bot (Lond) 91(5): 547-557. http://www.ncbi.nlm.nih.gov/pubmed/12646499.

Bosco, G., P. Campbell, et al. (2007). "Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species." Genetics 177(3): 1277-1290. http://www.ncbi.nlm.nih.gov/pubmed/18039867%22.

Chrtek, J., Jr., J. Zahradnicek, et al. (2009). "Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups." Ann Bot 104(1): 161-178. http://www.ncbi.nlm.nih.gov/pubmed/19433417.

Dufresne, F. and N. Jeffery (2011). "A guided tour of large genome size in animals: what we know and where we are heading." Chromosome Res 19(7): 925-938. http://www.ncbi.nlm.nih.gov/pubmed/22042526.

Friar, J. L., T. Goldman, et al. (2012). "Genome sizes and the benford distribution." PLoS One 7(5): e36624. http://www.ncbi.nlm.nih.gov/pubmed/22629319.

Gregory, T. R. and J. S. Johnston (2008). "Genome size diversity in the family Drosophilidae." Heredity\ 101\(3\): 228-238\. http://www.ncbi.nlm.nih.gov/pubmed/18523443%22.

Gregory, T. R., J. A. Nicol, et al. (2007). "Eukaryotic genome size databases." Nucleic Acids Res 35(Database issue): D332-338. http://www.ncbi.nlm.nih.gov/pubmed/17090588.

Greilhuber, J., J. Dolezel, et al. (2005). "The origin, evolution and proposed stabilization of the terms 'genome size' and\ 'C-value' to describe nuclear DNA contents." Ann Bot\ 95\(1\): 255-260\. http://www.ncbi.nlm.nih.gov/pubmed/15596473%22.

Hawkins, J. S., H. Kim, et al. (2006). "Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium." Genome Res 16(10): 1252-1261. http://www.ncbi.nlm.nih.gov/pubmed/16954538.

Hou, Y. and S. Lin (2009). "Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes." PLoS One 4(9): e6978. http://www.ncbi.nlm.nih.gov/pubmed/19750009.

Hou, Y. and S. Lin (2009). "Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes:\ gene content estimation for dinoflagellate genomes." PLoS One\ 4\(9\): e6978\. http://www.ncbi.nlm.nih.gov/pubmed/19750009%22.

Isambert, H. and R. R. Stein (2009). "On the need for widespread horizontal gene transfers under genome size constraint." Biol Direct 4(1): 28. http://www.ncbi.nlm.nih.gov/pubmed/19703318.

Kidwell, M. G. (2002). "Transposable elements and the evolution of genome size in eukaryotes." Genetica\ 115\(1\): 49-63\. http://www.ncbi.nlm.nih.gov/pubmed/12188048%22.

Kraaijeveld, K. (2010). "Genome Size and Species Diversification." Evol Biol 37(4): 227-233. http://www.ncbi.nlm.nih.gov/pubmed/22140283.

Leitch, I. J., J. M. Beaulieu, et al. (2007). "Punctuated genome size evolution in Liliaceae." J Evol Biol 20(6): 2296-2308. http://www.ncbi.nlm.nih.gov/pubmed/17956392.

Leitch, I. J., I. Kahandawala, et al. (2009). "Genome size diversity in orchids: consequences and evolution." Ann Bot 104(3): 469-481. http://www.ncbi.nlm.nih.gov/pubmed/19168860.

Morse, A. M., D. G. Peterson, et al. (2009). "Evolution of genome size and complexity in Pinus." PLoS One\ 4\(2\): e4332\. http://www.ncbi.nlm.nih.gov/pubmed/19194510%22.

Nakabachi, A., S. Koshikawa, et al. (2010). "Genome size of Pachypsylla venusta (Hemiptera: Psyllidae) and the ploidy of its bacteriocyte, the symbiotic host cell that harbors intracellular mutualistic bacteria with the smallest cellular genome." Bull Entomol Res 100(1): 27-33. http://www.ncbi.nlm.nih.gov/pubmed/19302725.

Neumann, P., A. Koblizkova, et al. (2006). "Significant expansion of Vicia pannonica genome size mediated by amplification of\ a single type of giant retroelement." Genetics\ 173\(2\): 1047-1056\. http://www.ncbi.nlm.nih.gov/pubmed/16585134%22.

Oliver, M. J., D. Petrov, et al. (2007). "The mode and tempo of genome size evolution in eukaryotes." Genome Res 17(5): 594-601. http://www.ncbi.nlm.nih.gov/pubmed/17420184.

Organ, C. L. and A. M. Shedlock (2009). "Palaeogenomics of pterosaurs and the evolution of small genome size in flying vertebrates." Biol Lett 5(1): 47-50. http://www.ncbi.nlm.nih.gov/pubmed/18940771.

Organ, C. L., A. M. Shedlock, et al. (2007). "Origin of avian genome size and structure in non-avian dinosaurs." Nature\ 446\(7132\): 180-184\. http://www.ncbi.nlm.nih.gov/pubmed/17344851%22.

Ozkan, H., M. Tuna, et al. (2003). "Nonadditive changes in genome size during allopolyploidization in the wheat (aegilops-triticum) group." J Hered 94(3): 260-264. http://www.ncbi.nlm.nih.gov/pubmed/12816968.

Park, M., J. Park, et al. (2012). "Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives." Plant J 69(6): 1018-1029. http://www.ncbi.nlm.nih.gov/pubmed/22074025.

Smarda, P., P. Bures, et al. (2008). "Intrapopulation genome size dynamics in Festuca pallens." Ann Bot 102(4): 599-607. http://www.ncbi.nlm.nih.gov/pubmed/18684733.

Smith, J. D. and T. R. Gregory (2009). "The genome sizes of megabats (Chiroptera: Pteropodidae) are remarkably constrained." Biol Lett 5(3): 347-351. http://www.ncbi.nlm.nih.gov/pubmed/19324635.

Tenaillon, M. I., M. B. Hufford, et al. (2011). "Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians." Genome Biol Evol 3: 219-229. http://www.ncbi.nlm.nih.gov/pubmed/21296765.

Tollis, M. and S. Boissinot (2011). "The transposable element profile of the anolis genome: How a lizard can provide insights into the evolution of vertebrate genome size and structure." Mob Genet Elements 1(2): 107-111. http://www.ncbi.nlm.nih.gov/pubmed/22016857.

Tsutsui, N. D., A. V. Suarez, et al. (2008). "The evolution of genome size in ants." BMC Evol Biol 8: 64. http://www.ncbi.nlm.nih.gov/pubmed/18302783.

Vitte, C. and O. Panaud (2005). "LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model." Cytogenet Genome Res 110(1-4): 91-107. http://www.ncbi.nlm.nih.gov/pubmed/16093661.

Wernegreen, J. J., H. Ochman, et al. (2000). "Decoupling of genome size and sequence divergence in a symbiotic bacterium." J Bacteriol\ 182\(13\): 3867-3869\. http://www.ncbi.nlm.nih.gov/pubmed/10851009%22.

Yotoko, K. S., M. C. Dornelas, et al. (2011). "Does variation in genome sizes reflect adaptive or neutral processes? New clues from Passiflora." PLoS One 6(3): e18212. http://www.ncbi.nlm.nih.gov/pubmed/21464897.

Zedek, F., J. Smerda, et al. (2010). "Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis." BMC Plant Biol 10: 265. http://www.ncbi.nlm.nih.gov/pubmed/21118487.

Zhang, H. and R. K. Dawe (2012). "Total centromere size and genome size are strongly correlated in ten grass species." Chromosome Res 20(4): 403-412. http://www.ncbi.nlm.nih.gov/pubmed/22552915.

Zuccolo, A., A. Sebastian, et al. (2007). "Transposable element distribution, abundance and role in genome size variation in\ the genus Oryza." BMC Evol Biol\ 7\: 152\. http://www.ncbi.nlm.nih.gov/pubmed/17727727%22.