Targeting
Of
Natural Genetic Engineering Within The Genome
(Wu and Burgess
2004; Holmes, Kaykov et
al. 2005; Winckler,
Szafranski et al. 2005; Berry,
Hannenhalli et al. 2006; Van Maele,
Busschots et al. 2006; Kauppi, Jasin et
al. 2007; Yamada-Inagawa,
Klar et al. 2007; Brady, Agosto et
al. 2009; Grey, Baudat et
al. 2009; Mathas, Kreher et
al. 2009; Rain, Cribier et
al. 2009; Uchiyama, Fujino
et al. 2009; Zhang and Saier
2009; Wu, Getun et al.
2010; Zhang, Yen et al.
2010; Zheng, Ao et al.
2010; Cooper, Bacolla
et al. 2011; Siol, Spaller et
al. 2011; Smagulova,
Gregoretti et al. 2011; Steiner, Davidow
et al. 2011)
Table II.11.
Examples of targeted natural genetic engineering. |
||
Example |
Observed specificity (mechanism) |
References |
DNA
import and export |
Special
DNA uptake signals; oriT sites
for initiating conjugal transfer replication |
DNA
uptake signals in bacterial transformation (Smith,
Gwinn et al. 1999; Wang,
Goodman et al. 2002; Davidsen,
Rodland et al. 2004; Findlay
and Redfield 2009; Maughan,
Wilson et al. 2010), oriT signals
in conjugative plasmids and elements (Adams,
Lyras et al. 2002; Grohmann,
Muth et al. 2003; Parker,
Becker et al. 2005; Garcillan-Barcia,
Francia et al. 2009) |
Homologous
recombination |
Special
sequences stimulating DS breaks and other biochemical
events in homologous exchange |
(Cromie,
Hyppa et al. 2007; Bagshaw,
Pitt et al. 2008; Pryce
and McFarlane 2009; Steiner,
Steiner et al. 2009) –
Chi-like
sequences (Smith
1994; Sourice,
Biaudet et al. 1998; El
Karoui, Biaudet et al. 1999; El
Karoui, Schaeffer et al. 2000; Amundsen
and Smith 2007; Halpern,
Chiapello et al. 2007; Dillingham
and Kowalczykowski 2008);
Spo11 targets and hotspots in S. cerevisiae
(Fukuda,
Kugou et al. 2008; Nicolas
2009; Tsai,
Burt et al. 2010);
M26 and other recombination hotspots in S. pombe (Smith
1994; Cromie,
Hyppa et al. 2007; Pryce
and McFarlane 2009; Steiner,
Steiner et al. 2009);
repeats in plant and animal genomes (Mezard
2006; Buard
and de Massy 2007; Coop
and Myers 2007; McVean
2010) |
Transposon
insertions at special DNA structures |
Insertion
at REP palindromes (transposase specificity), DNA
replication forks (interaction with processivity
factor) |
(Tobes
and Pareja 2006); (Jomantiene,
Zhao et al. 2007);(Nunvar,
Huckova et al.) (Peters
and Craig 2000; Peters
and Craig 2001) (Parks,
Li et al. 2009) |
IS200/IS605
family target site selection |
DNA
sequence homology |
(Barabas,
Ronning et al. 2008; Guynet,
Achard et al. 2009) |
IS911
target site selection |
InsAB
transposase binding to specific DNA sequences;
regulated by synthesis of InsA transposase without
specificity |
(Rousseau,
Loot et al. 2007) |
Cassette
replacement/conversion in antigenic variation |
DNA
sequence homology at cassette boundaries |
(Barbour
and Restrepo 2000; Brayton,
Palmer et al. 2002; Palmer,
Futse et al. 2006; Palmer
and Brayton 2007; Palmer,
Bankhead et al. 2009) |
Site-specific
recombination (phase variation, antigenic variation,
insertions and excisions) |
Protein
recognition of DNA sequence; protein-protein
interaction |
(Nash
1981), (Silverman,
Zieg et al. 1979; Komano,
Kim et al. 1994; Komano
1999) |
Diversity-generating
retroelements |
Localized
mutagenesis at duplicated segment of coding region;
reverse transcription, RNA-DNA sequence homology |
(Medhekar
and Miller 2007; Guo,
Tse et al. 2008) |
Mating
type cassette switching (S. cerevisiae, S.
pombe, Kluyveromyces lactis) |
Protein
recognition of DNA sequence (endonuclease or
transposase cleavage at unique site), DNA sequence
homology at cassette boundaries |
(Haber
1998; Klar,
Ivanova et al. 1998; Dalgaard
and Klar 1999; Haber
2006; Klar
2007;
Barsoum,
Martinez et al. 2010); (Rusche
and Rine 2010) |
Immune
system V(D)J joining |
Cleavage
at specific recombination signal sequences
(recognition of RSSs by RAG1+2 transposase); flexible
joining by non-homologous end joining (NHEJ) functions
|
(Bassing, Swat et al. 2002; Gellert 2002) |
Immune
system somatic hypermutation |
5’ exons
of immunoglobulin sequences (transcriptional
specificity determinants), DIVAC element to suppress
repair |
(Honjo, Kinoshita et al. 2002; Inlay, Gao et al. 2006;
Yang, Fugmann et al. 2006; Xiang and Garrard 2008;
Blagodatski, Batrak et al. 2009) |
Immune
system class switching |
Lymphokine-controlled
choice of switch region transcription (promoter
activation) |
(Kinoshita and Honjo 2001; Honjo, Kinoshita et al. 2002) |
Budding
yeast (S.
cerevisaea) retroviral-like elements Ty1-Ty4 |
Strong
preference for insertion upstream of RNA polymerase
III initiation sites (protein-protein
interaction of integrase with RNA polymerase III
factors TFIIIB and TFIIIC). |
(Kirchner,
Connolly et al. 1995; Kim,
Vanguri et al. 1998; Bushman
2003; Bachman,
Gelbart et al. 2005; Mou,
Kenny et al. 2006) |
Budding
yeast retroviral-like element Ty1 |
Preference
for insertion upstream of RNA polymerase II initiation
sites rather than exons. |
(Eibel
and Philippsen 1984) |
Budding
yeast retroviral-like element Ty5 |
Strong
preference for insertion in transcriptionally silenced
regions of the yeast genome (protein-protein
interaction of integrase targeting domain (TD) with
Sir4 silencing protein). Regulated in response to
stress by modulation of integrase TD protein
phosphorylation. |
(Zou, Ke et al. 1996;
Gai and Voytas 1998;
Zhu, Zou et al. 1998;
Xie, Gai et al. 2001;
Bushman 2003;
Zhu, Dai et al. 2003;
Brady, Schmidt et al. 2008); (Dai, Xie et al. 2007) |
Fission
yeast (S. pombe)
retroviral-like elements Tf1 & Tf2 |
Insertion almost exclusively in
intergenic regions (>98% for Tf1); biased towards PolII
promoter-proximal sites, 100 – 400 bp upstream of the
translation start by protein-protein interaction with
transcription activators; prefers chromosome 3. |
(Behrens, Hayles et al.
2000; Singleton and Levin
2002; Bowen, Jordan et al.
2003); (Bushman 2003;
Kordis 2005;
Leem, Ripmaster et al. 2008);
(Chatterjee, Leem et
al. 2009)
(Novikova 2009)
(Guo and Levin 2010) |
MAGGY
(fungal Ty3/gypsy family) retrotransposon |
Targeting
to heterochromatin by chromodomain in integrase
protein |
(Gao, Hou et al. 2008) |
Dictyostelium discoideum
non-LTR retrotransposon TRE5-A |
Insertion
upstream of tRNA sequences by protein-protein
interactions with RNA Pol III transcription factors |
(Siol, Boutliliss et al. 2006; Chung, Siol et al. 2007) |
Rapidly expanding mPing
transposons in rice |
Insertion
upstream of coding sequences |
(Naito, Zhang et al. 2009) |
Drosophila
ZAM LTR retrotransposons |
Site-specific
insertions by protein-DNA recognition |
(Faye, Arnaud et al. 2008) |
Murine
Leukemia Virus (MLV) |
Preference
for insertion upstream of transcription start sites in
human genome; role for IN (integrase) and GAG proteins |
(Bushman 2003;
Wu, Li et al. 2003;
Mitchell, Beitzel et al. 2004); (Dunbar 2005;
Lewinski, Yamashita et al. 2006) |
HIV, SIV |
Preference
for insertion into actively transcribed regions of
human genome; role for IN (integrase) and GAG
proteins; HIV integrase interaction with LEDGF/p75
transcription factor |
(Mitchell, Beitzel et al. 2004; Ciuffi, Llano et al. 2005; Dunbar 2005;
Ciuffi and Bushman 2006; Ciuffi, Diamond et al. 2006; Lewinski, Yamashita et al. 2006; Llano, Saenz et al. 2006; Botbol, Raghavendra et al. 2008; Ciuffi 2008); (Engelman and Cherepanov 2008; Levin, Rosenbluh et al. 2010) |
Gammaretroviral
(but not lentiviral) vectors |
Insertion
at transcription factor binding sites; 21% recurrence
rate at hotspots |
(Cattoglio, Facchini et al. 2007; Deichmann, Hacein-Bey-Abina et al.
2007; Felice, Cattoglio et al. 2009) |
Drosophila gypsy retrovirus |
Site-specific
insertion into Ovo
locus regulatory region guided by Ovo protein
binding sites |
(Labrador and Corces 2001; Labrador, Sha et al. 2008) |
Drosophila P-factors |
Preference
for insertion into the 5’ end of transcripts |
(Spradling,
Stern et al. 1995) |
Drosophila
P-factors |
Targeting
(“homing”) to regions of transcription factor function
by incorporation of cognate binding site;
region-specific |
(Kassis, Noll et al. 1992; Taillebourg and Dura 1999; Bender and Hudson 2000) (Fauvarque and Dura 1983; Hama, Ali et al. 1990;
Kassis 2002) |
HeT-A and
TART retrotransposons |
Insertion
at Drosophila telomeres |
(Casacuberta and Pardue 2002; Casacuberta and Pardue 2003; Casacuberta and Pardue 2003; Pardue and DeBaryshe 2003) |
R1 and R2
LINE element retrotransposons |
Insertion
in arthropod ribosomal 28S coding sequences
(sequence-specific homing endonuclease) |
(Xiong,
Burke et al. 1988; Xiong
and Eickbush 1988; Xiong
and Eickbush 1988; Burke,
Malik et al. 1989) |
Group I
homing introns (DNA based) |
Site-specific
insertion into coding sequences in bacteria and
eukaryotes (sequence-specific endonuclease) |
(Belfort
and Perlman 1995) |
Group II
homing introns (RNA based) |
Site-specific
insertion into coding sequences in bacteria and
eukaryotes (RNA recognition of DNA sequence motifs,
reverse transcription) |
(Mohr,
Smith et al. 2000; Karberg,
Guo et al. 2001) |
Group II intron retroelements |
Insertion
after intrinsic transcriptional terminators. |
(Robart,
Seo et al. 2007) |
Homologous
recombination
(Martini and
Keeney 2002; Nishant and Rao
2006; Nicolas 2009; Parvanov, Ng et
al. 2009; Ding, Haraguchi
et al. 2010; Getun, Wu et al.
2010; Paigen and Petkov
2010; Szekvolgyi and
Nicolas 2010; Wahls and
Davidson 2010; Grey, Sommermeyer
et al. 2011; Segurel, Leffler
et al. 2011)
Chromosome
fragile sites
(Le Beau 1986; Yunis 1987; Moriarty and
Webster 2003; Ishii and
Furukawa 2004; Arlt, Durkin et
al. 2006; Glover 2006; O'Keefe and
Richards 2006; Durkin and Glover
2007; Ruiz-Herrera and
Robinson 2007; Smith, McAvoy et
al. 2007; Pichiorri, Ishii
et al. 2008; Burrow, Williams
et al. 2009; Casper, Greenwell
et al. 2009; Gericke 2010)
Viral
integration
(Barr, Ciuffi et
al. 2006; Moalic, Blanchard
et al. 2006; Derse, Crise et
al. 2007; Albanese, Arosio
et al. 2008; Brady, Lee et al.
2009; Santoni, Hartley
et al. 2010)
Agrobacterium T-DNA insertion
(Pelczar, Kalck et
al. 2004; Muller, Atkinson
et al. 2007; Lacroix and
Citovsky 2009)
Diversity-generating
retroelements
(Doulatov, Hodes
et al. 2004; Medhekar and
Miller 2007; Guo, Tse et al.
2008; Kojima and
Kanehisa 2008; Miller, Le Coq et
al. 2008; Baucom, Estill et
al. 2009; Baucom, Estill et
al. 2009; Guo, Tse et al.
2011)
Group II retrohoming
introns
(Mohr, Smith et
al. 2000; Karberg, Guo et
al. 2001; Dai and Zimmerly
2002; Zhong, Karberg et
al. 2003; Jones, Kierlin et
al. 2005; Yao and Lambowitz
2007; Mastroianni,
Watanabe et al. 2008; Toor, Rajashankar
et al. 2008; Zhuang,
Mastroianni et al. 2009)
DNA
transposition
(Craig 1991; Wolkow, DeBoy et
al. 1996; Ketting, Fischer
et al. 1997; Akagi, Yokozeki
et al. 2001; Lee, Neiditch et
al. 2002; Timakov, Liu et
al. 2002; Preclin, Martin
et al. 2003; Tsai, Chatterji
et al. 2003; Loot, Turlan et
al. 2004; Walser, Chen et
al. 2006; Kiss, Nagy et al.
2007; Linheiro and
Bergman 2008; Chandler 2009; Liu, Yeh et al.
2009; Post and Hall
2009; Zhang and Saier
2009; Gangadharan,
Mularoni et al. 2010; Levy, Schwartz et
al. 2010; Rawal and
Ramaswamy 2011)
Tn7: (Nnalue 1990; Craig 1991; Hagemann and
Craig 1993; Wolkow, DeBoy et
al. 1996; Peters and Craig
2000; Peters and Craig
2001; Finn, Parks et
al. 2007; Shi, Parks et al.
2008; Parks and Peters
2009)
Retrovirus
and retrotransposon insertion
(Zou and Voytas
1997; Cost and Boeke
1998; Jurka, Klonowski
et al. 1998; Huang, Hong et
al. 1999; Szafranski,
Glockner et al. 1999; Beck, Dingermann
et al. 2002; De Palma, Montini
et al. 2005; Johnson and Levy
2005; Repanas, Zingler
et al. 2007; Brady, Fuerst et
al. 2008; Hare and
Cherepanov 2009; Levy, Schwartz et
al. 2010; Santoni, Hartley
et al. 2010; Rawal and
Ramaswamy 2011; Siol, Spaller et
al. 2011)
Somatic hypermutation
and class switching
(Chaudhuri, Tian
et al. 2003; Odegard, Kim et
al. 2005; Odegard and
Schatz 2006; Yang and Schatz
2007; Hackney, Misaghi
et al. 2009; Maul and Gearhart
2010; Maul and Gearhart
2010; Tanaka, Shen et
al. 2010)
Ciliate macronuclear
rearrangements: (Gortz, Kuhlmann
et al. 1999; Prescott 2000; Betermier 2004; Juranek and Lipps
2007; Lepere, Betermier
et al. 2008; Baudry, Malinsky
et al. 2009; Duharcourt,
Lepere et al. 2009; Clark 2010)
Synthetic
targeting: (Beck, Dingermann
et al. 2002; Sandrin, Russell
et al. 2003; Egli, Hafen et
al. 2004; Hematti, Hong et
al. 2004; Horn and Handler
2005; Ciuffi, Diamond
et al. 2006; Garcia-Otin and
Guillou 2006; Cui and Davis
2007; Ivics, Katzer et
al. 2007; Frecha, Szecsi et
al. 2008; Voigt, Izsvak et
al. 2008; Yu and Kim 2008; Ziegler, Yang et
al. 2008; Cai, Doyon et al.
2009; Deyle and Russell
2009; Feng, Bednarz et
al. 2009; Foley, Yeh et al.
2009; Galvan, Nakazawa
et al. 2009; Kim, Lee et al.
2009; Weng, Chen et al.
2009; Christian, Cermak
et al. 2010; Craigie 2010; Karan, Frederick
et al. 2010; Lim, Klimczak et
al. 2010; Urnov, Rebar et
al. 2010; Vasquez 2010; Weinthal, Tovkach
et al. 2010; Zhang, Kutner et
al. 2010; Bogdanove and
Voytas 2011; Huda, Bowen et
al. 2011; Li, Huang et al.
2011; Mahfouz, Li et
al. 2011)
http://www.nature.com/nmeth/focus/moy2011/index.html; http://www.cellectis-bioresearch.com/custom-talen-service?utm_source=jbc&utm_medium=; http://www.cellectis-bioresearch.com/gene-function?utm_source=jbc&utm_medium=etoc120224&utm_campaign=gene-function
REFERENCES
Adams, V., D.
Lyras, et al. (2002).
"The clostridial mobilisable transposons." Cell Mol Life
Sci 59(12):
2033-2043. http://www.ncbi.nlm.nih.gov/pubmed/12568329.
Akagi, H., Y.
Yokozeki, et al.
(2001). "Micron, a microsatellite-targeting transposable
element in the
rice genome." Mol Genet Genomics 266(3): 471-480. http://www.ncbi.nlm.nih.gov/pubmed/11713677.
Albanese, A., D.
Arosio, et al.
(2008). "HIV-1 pre-integration complexes selectively target
decondensed
chromatin in the nuclear periphery." PLoS One 3(6): e2413. http://www.ncbi.nlm.nih.gov/pubmed/18545681.
Amundsen, S. K.
and G. R. Smith
(2007). "Chi hotspot activity in Escherichia coli without
RecBCD
exonuclease activity: implications for the mechanism of
recombination." Genetics
175(1): 41-54. http://www.ncbi.nlm.nih.gov/pubmed/17110484.
Arlt, M. F., S.
G. Durkin, et al.
(2006). "Common fragile sites as targets for chromosome
rearrangements." DNA Repair (Amst) 5(9-10): 1126-1135. http://www.ncbi.nlm.nih.gov/pubmed/16807141.
Bachman, N., M.
E. Gelbart, et al.
(2005). "TFIIIB subunit Bdp1p is required for periodic
integration of the
Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae
tDNAs." Genes
Dev 19(8):
955-964. http://www.ncbi.nlm.nih.gov/pubmed/15833918.
Bagshaw, A. T.,
J. P. Pitt, et al.
(2008). "High frequency of microsatellites in S. cerevisiae
meiotic
recombination hotspots." BMC Genomics 9: 49. http://www.ncbi.nlm.nih.gov/pubmed/18226240.
Barabas, O., D.
R. Ronning, et al.
(2008). "Mechanism of IS200/IS605 family DNA transposases:
activation and
transposon-directed target site selection." Cell 132(2): 208-220. http://www.ncbi.nlm.nih.gov/pubmed/18243097.
Barbour, A. G.
and B. I. Restrepo
(2000). "Antigenic variation in vector-borne pathogens." Emerg
Infect
Dis 6(5):
449-457. http://www.ncbi.nlm.nih.gov/pubmed/10998374.
Barr, S. D.,
A. Ciuffi, et al. (2006). "HIV integration site selection:
targeting in
macrophages and the effects of different routes of viral
entry." Mol
Ther 14(2):
218-225. http://www.ncbi.nlm.nih.gov/pubmed/16647883.
Barsoum, E.,
P. Martinez, et al. (2010). "α3, a transposable element that
promotes host
sexual reproduction." Genes Dev 24: 33-44. http://www.ncbi.nlm.nih.gov/pubmed/20008928.
Bassing, C.
H., W. Swat, et al. (2002). "The mechanism and regulation of
chromosomal
V(D)J recombination." Cell 109:
S45-55. http://www.ncbi.nlm.nih.gov/pubmed/11983152.
Baucom, R.
S., J. C. Estill, et al. (2009). "Exceptional diversity,
non-random
distribution, and rapid evolution of retroelements in the
B73 maize
genome." PLoS Genet 5(11):
e1000732. http://www.ncbi.nlm.nih.gov/pubmed/19936065.
Baudry, C.,
S. Malinsky, et al. (2009). "PiggyMac, a domesticated
piggyBac transposase
involved in programmed genome rearrangements in the ciliate
Paramecium
tetraurelia." Genes Dev 23(21):
2478-2483. http://www.ncbi.nlm.nih.gov/pubmed/19884254.
Beck, P., T.
Dingermann, et al. (2002). "Transfer RNA gene-targeted
retrotransposition
of Dictyostelium TRE5-A into a chromosomal UMP synthase gene
trap." J
Mol Biol 318(2):
273-285. http://www.ncbi.nlm.nih.gov/pubmed/12051837.
Behrens, R.,
J. Hayles, et al. (2000). "Fission yeast retrotransposon Tf1
integration
is targeted to 5' ends of open reading frames." Nucleic
Acids Res 28(23):
4709-4716. http://www.ncbi.nlm.nih.gov/pubmed/11095681.
Belfort, M.
and P. S. Perlman (1995). "Mechanisms of intron mobility." J
Biol
Chem 270(51):
30237-30240. http://www.ncbi.nlm.nih.gov/pubmed/8530436.
Bender, W.
and A. Hudson (2000). "P element homing to the Drosophila
bithorax
complex." Development 127(18):
3981-3992. http://www.ncbi.nlm.nih.gov/pubmed/10952896.
Berry, C., S.
Hannenhalli, et al. (2006). "Selection of target sites for
mobile DNA
integration in the human genome." PLoS Comput Biol 2(11): e157. http://www.ncbi.nlm.nih.gov/pubmed/17166054.
Betermier, M.
(2004). "Large-scale genome remodelling by the
developmentally programmed
elimination of germ line sequences in the ciliate
Paramecium." Res Microbiol
155(5): 399-408.
http://www.ncbi.nlm.nih.gov/pubmed/15207872.
Blagodatski,
A., V. Batrak, et al. (2009). "A cis-acting diversification
activator both
necessary and sufficient for AID-mediated hypermutation." PLoS
Genet
5(1): e1000332. http://www.ncbi.nlm.nih.gov/pubmed/19132090.
Bogdanove, A.
J. and D. F. Voytas (2011). "TAL effectors: customizable
proteins for DNA
targeting." Science 333(6051):
1843-1846. http://www.ncbi.nlm.nih.gov/pubmed/21960622.
Botbol, Y.,
N. K. Raghavendra, et al. (2008). "Chromatinized templates
reveal the
requirement for the LEDGF/p75 PWWP domain during HIV-1
integration in
vitro." Nucleic Acids Res 36(4):
1237-1246. http://www.ncbi.nlm.nih.gov/pubmed/18174227.
Bowen, N. J.,
I. K. Jordan, et al. (2003). "Retrotransposons and their
recognition of pol
II promoters: a comprehensive survey of the transposable
elements from the
complete genome sequence of Schizosaccharomyces pombe." Genome
Res 13(9):
1984-1997. http://www.ncbi.nlm.nih.gov/pubmed/12952871.
Brady, T., L.
M. Agosto, et al. (2009). "HIV integration site
distributions in resting
and activated CD4+ T cells infected in culture." AIDS
Rev 23(12):
1461-1471. http://www.ncbi.nlm.nih.gov/pubmed/19550285.
Brady, T., Y.
N. Lee, et al. (2009). "Integration target site selection by
a resurrected
human endogenous retrovirus." Genes Dev 23(5): 633-642. http://www.ncbi.nlm.nih.gov/pubmed/19270161.
Brady, T. L.,
P. G. Fuerst, et al. (2008). "Retrotransposon target site
selection by
imitation of a cellular protein." Mol Cell Biol 28(4): 1230-1239.
http://www.ncbi.nlm.nih.gov/pubmed/18086891.
Brady, T. L.,
C. L. Schmidt, et al. (2008). "Targeting integration of the
Saccharomyces
Ty5 retrotransposon." Methods Mol Biol 435: 153-163. http://www.ncbi.nlm.nih.gov/pubmed/18370074.
Brayton, K.
A., G. H. Palmer, et al. (2002). "Antigenic variation of
Anaplasma
marginale msp2 occurs by combinatorial gene conversion." Mol
Microbiol
43(5): 1151-1159.
http://www.ncbi.nlm.nih.gov/pubmed/11918803.
Buard, J. and
B. de Massy (2007). "Playing hide and seek with mammalian
meiotic
crossover hotspots." Trends Genet 23(6): 301-309. http://www.ncbi.nlm.nih.gov/pubmed/17434233.
Burke, W. D.,
H. S. Malik, et al. (1989). "The domain structure and
retrotransposition
mechanism of R2 elements are conserved throughout
arthropods." Mol Biol
Evol 16(4):
502-511. http://www.ncbi.nlm.nih.gov/pubmed/10331276.
Burrow, A.
A., L. E. Williams, et al. (2009). "Over half of breakpoints
in gene pairs
involved in cancer-specific recurrent translocations are
mapped to human
chromosomal fragile sites." BMC Genomics 10: 59. http://www.ncbi.nlm.nih.gov/pubmed/19183484.
Bushman, F.
D. (2003). "Targeting survival: integration site selection
by retroviruses
and LTR-retrotransposons." Cell 115(2): 135-138. http://www.ncbi.nlm.nih.gov/pubmed/14567911.
Cai, C. Q.,
Y. Doyon, et al. (2009). "Targeted transgene integration in
plant cells
using designed zinc finger nucleases." Plant Mol Biol
69(6): 699-709. http://www.ncbi.nlm.nih.gov/pubmed/19112554.
Casacuberta,
E. and M. L. Pardue (2002). "Coevolution of the telomeric
retrotransposons
across Drosophila species." Genetics 161(3): 1113-1124. http://www.ncbi.nlm.nih.gov/pubmed/12136015.
Casacuberta,
E. and M. L. Pardue (2003). "HeT-A elements in Drosophila
virilis:
retrotransposon telomeres are conserved across the
Drosophila genus." Proc
Natl Acad Sci U S A 100(24):
14091-14096. http://www.ncbi.nlm.nih.gov/pubmed/14614149.
Casacuberta,
E. and M. L. Pardue (2003). "Transposon telomeres are widely
distributed
in the Drosophila genus: TART elements in the virilis
group." Proc Natl
Acad Sci U S A 100(6):
3363-3368.
http://www.ncbi.nlm.nih.gov/pubmed/12626755\.
Casper, A.
M., P. W. Greenwell, et al. (2009). "Chromosome aberrations
resulting from
double-strand DNA breaks at a naturally occurring yeast
fragile site composed
of inverted ty elements are independent of Mre11p and
Sae2p." Genetics
183(2): 423-439,
421SI-426SI. http://www.ncbi.nlm.nih.gov/pubmed/19635935.
Cattoglio,
C., G. Facchini, et al. (2007). "Hot spots of retroviral
integration in
human CD34+ hematopoietic cells." Blood 110(6): 1770-1778. http://www.ncbi.nlm.nih.gov/pubmed/17507662.
Chandler, M.
(2009). "Clamping down on transposon targeting." Cell
138(4): 621-623.
http://www.ncbi.nlm.nih.gov/pubmed/19703389.
Chatterjee,
A. G., Y. E. Leem, et al. (2009). "The chromodomain of Tf1
integrase
promotes binding to cDNA and mediates target site
selection." J Virol
83(6): 2675-2685.
http://www.ncbi.nlm.nih.gov/pubmed/19109383.
Chaudhuri,
J., M. Tian, et al. (2003). "Transcription-targeted DNA
deamination by the
AID antibody diversification enzyme." Nature 422(6933): 726-730. http://www.ncbi.nlm.nih.gov/pubmed/12692563.
Christian,
M., T. Cermak, et al. (2010). "Targeting DNA double-strand
breaks with TAL
effector nucleases." Genetics 186(2):
757-761. http://www.ncbi.nlm.nih.gov/pubmed/20660643.
Chung, T., O.
Siol, et al. (2007). "Protein interactions involved in tRNA
gene-specific
integration of Dictyostelium discoideum non-long terminal
repeat
retrotransposon TRE5-A." Mol Cell Biol 27(24): 8492-8501. http://www.ncbi.nlm.nih.gov/pubmed/17923679.
Ciuffi, A.
(2008). "Mechanisms governing lentivirus integration site
selection."
Curr Gene Ther 8(6): 419-429.
http://www.ncbi.nlm.nih.gov/pubmed/19075625.
Ciuffi, A.
and F. D. Bushman (2006). "Retroviral DNA integration: HIV
and the role of
LEDGF/p75." Trends Genet 22(7):
388-395. http://www.ncbi.nlm.nih.gov/pubmed/16730094.
Ciuffi, A.,
T. L. Diamond, et al. (2006). "Modulating target site
selection during
human immunodeficiency virus DNA integration in vitro with
an engineered
tethering factor." Hum Gene Ther 17(9): 960-967. http://www.ncbi.nlm.nih.gov/pubmed/16972764.
Ciuffi, A.,
M. Llano, et al. (2005). "A role for LEDGF/p75 in targeting
HIV DNA
integration." Nat Med 11(12):
1287-1289. http://www.ncbi.nlm.nih.gov/pubmed/16311605.
Clark, K. B.
(2010). "On classical and quantum error-correction in
ciliate mate
selection." Commun Integr Biol 3(4):
374-378. http://www.ncbi.nlm.nih.gov/pubmed/20798831.
Coop, G. and
S. R. Myers (2007). "Live hot, die young: transmission
distortion in
recombination hotspots." PLoS Genet 3(3): e35. http://www.ncbi.nlm.nih.gov/pubmed/17352536.
Cooper, D.
N., A. Bacolla, et al. (2011). "On the sequence-directed
nature of human
gene mutation: the role of genomic architecture and the
local DNA sequence
environment in mediating gene mutations underlying human
inherited
disease." Hum Mutat 32(10):
1075-1099. http://www.ncbi.nlm.nih.gov/pubmed/21853507.
Cost, G. J.
and J. D. Boeke (1998). "Targeting of human retrotransposon
integration is
directed by the specificity of the L1 endonuclease for
regions of unusual DNA
structure." Biochemistry 37(51):
18081-18093. http://www.ncbi.nlm.nih.gov/pubmed/9922177.
Craig, N. L.
(1991). "Tn7: a target site-specific transposon." Mol
Microbiol
5(11): 2569-2573.
http://www.ncbi.nlm.nih.gov/pubmed/1664019.
Craigie, R.
(2010). "Targeting HIV-1 DNA integration by swapping
tethers." Proc
Natl Acad Sci U S A\ 107\(7\):
2735-2736\. http://www.ncbi.nlm.nih.gov/pubmed/20145107\.
Cromie, G.
A., R. W. Hyppa, et al. (2007). "A discrete class of
intergenic DNA
dictates meiotic DNA break hotspots in fission yeast." PLoS
Genet 3(8):
e141. http://www.ncbi.nlm.nih.gov/pubmed/17722984.
Cui, X. and
G. Davis (2007). "Mobile group II intron targeting:
applications in
prokaryotes and perspectives in\ eukaryotes." Front
Biosci\ 12\:
4972-4985\. http://www.ncbi.nlm.nih.gov/pubmed/17569624\.
Dai, J., W.
Xie, et al. (2007). "Phosphorylation regulates integration
of the yeast
Ty5 retrotransposon into heterochromatin." Mol Cell
27(2): 289-299. http://www.ncbi.nlm.nih.gov/pubmed/17643377.
Dai, L. and
S. Zimmerly (2002). "Compilation and analysis of group II
intron
insertions in bacterial genomes: evidence for retroelement
behavior." Nucleic
Acids Res 30(5):
1091-1102. http://www.ncbi.nlm.nih.gov/pubmed/11861899.
Dalgaard, J.
Z. and A. J. Klar (1999). "Orientation of DNA replication
establishes
mating-type switching pattern in S. pombe." Nature 400(6740):
181-184. http://www.ncbi.nlm.nih.gov/pubmed/10408447.
Davidsen, T.,
E. A. Rodland, et al. (2004). "Biased distribution of DNA
uptake sequences
towards genome maintenance genes." Nucleic Acids Res
32(3): 1050-1058.
http://www.ncbi.nlm.nih.gov/pubmed/14960717.
De Palma, M.,
E. Montini, et al. (2005). "Promoter trapping reveals
significant
differences in integration site selection between MLV and
HIV vectors in
primary hematopoietic cells." Blood 105(6): 2307-2315. http://www.ncbi.nlm.nih.gov/pubmed/15542582.
Deichmann,
A., S. Hacein-Bey-Abina, et al. (2007). "Vector integration
is nonrandom
and clustered and influences the fate of lymphopoiesis in
SCID-X1 gene therapy."
J Clin Invest\ 117(8):
2225-2232. http://www.ncbi.nlm.nih.gov/pubmed/17671652.
Derse, D., B.
Crise, et al. (2007). "Human T-cell leukemia virus type 1
integration
target sites in the human genome: comparison with those of
other
retroviruses." J Virol 81(12):
6731-6741. http://www.ncbi.nlm.nih.gov/pubmed/17409138.
Deyle, D. R.
and D. W. Russell (2009). "Adeno-associated virus vector
integration." Curr Opin Mol Ther 11(4): 442-447. http://www.ncbi.nlm.nih.gov/pubmed/19649989.
Dillingham,
M. S. and S. C. Kowalczykowski (2008). "RecBCD enzyme and
the repair of
double-stranded DNA breaks." Microbiol Mol Biol Rev
72(4): 642-671. http://www.ncbi.nlm.nih.gov/pubmed/19052323.
Ding, D. Q.,
T. Haraguchi, et al. (2010). "From meiosis to postmeiotic
events:
alignment and recognition of homologous chromosomes in
meiosis." FEBS J
277(3): 565-570.
http://www.ncbi.nlm.nih.gov/pubmed/20015081.
Doulatov, S.,
A. Hodes, et al. (2004). "Tropism switching in Bordetella
bacteriophage
defines a family of diversity-generating retroelements." Nature
431(7007):
476-481. http://www.ncbi.nlm.nih.gov/pubmed/15386016.
Duharcourt,
S., G. Lepere, et al. (2009). "Developmental genome
rearrangements in
ciliates: a natural genomic subtraction mediated by
non-coding
transcripts." Trends Genet 25(8):
344-350. http://www.ncbi.nlm.nih.gov/pubmed/19596481.
Dunbar, C. E.
(2005). "Stem cell gene transfer: insights into integration
and
hematopoiesis from primate genetic marking studies." Ann
N Y Acad Sci
1044: 178-182\. http://www.ncbi.nlm.nih.gov/pubmed/15958711.
Durkin, S. G.
and T. W. Glover (2007). "Chromosome fragile sites." Annu
Rev
Genet 41:
169-192. http://www.ncbi.nlm.nih.gov/pubmed/17608616.
Egli, D., E.
Hafen, et al. (2004). "An efficient method to generate
chromosomal
rearrangements by targeted DNA double-strand breaks in
Drosophila
melanogaster." Genome Res 14(7):
1382-1393. http://www.ncbi.nlm.nih.gov/pubmed/15197166.
Eibel, H. and
P. Philippsen (1984). "Preferential integration of yeast
transposable
element Ty into a promoter region." Nature 307(5949): 386-388. http://www.ncbi.nlm.nih.gov/pubmed/6320003.
El Karoui,
M., V. Biaudet, et al. (1999). "Characteristics of Chi
distribution on
different bacterial genomes." Res Microbiol 150(9-10): 579-587. http://www.ncbi.nlm.nih.gov/pubmed/10672998.
El Karoui,
M., M. Schaeffer, et al. (2000). "Orientation specificity of
the
Lactococcus lactis Chi site." Genes Cells 5(6): 453-461. http://www.ncbi.nlm.nih.gov/pubmed/10886371.
Engelman, A.
and P. Cherepanov (2008). "The lentiviral integrase binding
protein
LEDGF/p75 and HIV-1 replication." PLoS Pathog 4(3): e1000046. http://www.ncbi.nlm.nih.gov/pubmed/18369482.
Fauvarque, M.
O. and J. M. Dura (1983). "polyhomeotic regulatory sequences
induce
developmental regulator-dependent variegation and targeted
P-element insertions
in Drosophila." Genes Dev 7(8):
1508-1520. http://www.ncbi.nlm.nih.gov/pubmed/8101825.
Faye, B., F.
Arnaud, et al. (2008). "Functional characteristics of a
highly specific
integrase encoded by an LTR-retrotransposon." PLoS One
3(9): e3185. http://www.ncbi.nlm.nih.gov/pubmed/18784842.
Felice, B.,
C. Cattoglio, et al. (2009). "Transcription factor binding
sites are
genetic determinants of retroviral integration in the human
genome." PLoS
One 4(2):
e4571. http://www.ncbi.nlm.nih.gov/pubmed/19238208.
Feng, X., A.
L. Bednarz, et al. (2009). "Precise targeted integration by
a chimaeric
transposase zinc-finger fusion\ protein." Nucleic Acids
Res\. http://www.ncbi.nlm.nih.gov/pubmed/19965773\.
Findlay, W.
A. and R. J. Redfield (2009). "Coevolution of DNA uptake
sequences and
bacterial proteomes." Genome Biol Evol 1: 45-55. http://www.ncbi.nlm.nih.gov/pubmed/20333176\.
Finn, J. A.,
A. R. Parks, et al. (2007). "Transposon Tn7 directs
transposition into the
genome of filamentous bacteriophage M13 using the
element-encoded TnsE protein."
J Bacteriol 189(24):
9122-9125.
http://www.ncbi.nlm.nih.gov/pubmed/17921297.
Foley, J. E.,
J. R. Yeh, et al. (2009). "Rapid mutation of endogenous
zebrafish genes
using zinc finger nucleases made by Oligomerized Pool
ENgineering (OPEN)."
PLoS One 4(2):
e4348. http://www.ncbi.nlm.nih.gov/pubmed/19198653.
Frecha, C.,
J. Szecsi, et al. (2008). "Strategies for targeting
lentiviral
vectors." Curr Gene Ther\ 8\(6\):
449-460\. http://www.ncbi.nlm.nih.gov/pubmed/19075628\.
Fukuda, T.,
K. Kugou, et al. (2008). "Targeted induction of meiotic
double-strand
breaks reveals chromosomal domain-dependent regulation of
Spo11 and
interactions among potential sites of meiotic
recombination." Nucleic
Acids Res 36(3):
984-997. http://www.ncbi.nlm.nih.gov/pubmed/18096626\.
Gai, X. and
D. F. Voytas (1998). "A single amino acid change in the
yeast
retrotransposon Ty5 abolishes targeting to silent
chromatin." Mol Cell
1(7): 1051-1055.
http://www.ncbi.nlm.nih.gov/pubmed/9651588.
Galvan, D.
L., Y. Nakazawa, et al. (2009). "Genome-wide mapping of
PiggyBac
transposon integrations in primary human T cells." J
Immunother 32(8):
837-844. http://www.ncbi.nlm.nih.gov/pubmed/19752750.
Gangadharan,
S., L. Mularoni, et al. (2010). "DNA transposon Hermes
inserts into DNA in
nucleosome-free regions in vivo." Proc Natl Acad Sci U S
A 107(51):
21966-21972. http://www.ncbi.nlm.nih.gov/pubmed/21131571.
Gao, X., Y.
Hou, et al. (2008). "Chromodomains direct integration of
retrotransposons
to heterochromatin." Genome Res 18(3): 359-369. http://www.ncbi.nlm.nih.gov/pubmed/18256242.
Garcia-Otin,
A. L. and F. Guillou (2006). "Mammalian genome targeting
using
site-specific recombinases." Front Biosci\ 11\: 1108-1136\. http://www.ncbi.nlm.nih.gov/pubmed/16146801\.
Garcillan-Barcia,
M. P., M. V. Francia, et al. (2009). "The diversity of
conjugative
relaxases and its application in plasmid classification." FEMS
Microbiol
Rev 33(3):
657-687. http://www.ncbi.nlm.nih.gov/pubmed/19396961.
Gericke, G.
S. (2010). "Common chromosomal fragile sites (CFS) may be
involved in
normal and traumatic cognitive stress memory consolidation
and altered nervous
system immunity." Med Hypotheses\ 74\(5\): 911-918\. http://www.ncbi.nlm.nih.gov/pubmed/20138440\.
Getun, I. V.,
Z. K. Wu, et al. (2010). "Nucleosome occupancy landscape and
dynamics at
mouse recombination hotspots." EMBO Rep 11(7): 555-560. http://www.ncbi.nlm.nih.gov/pubmed/20508641.
Glover, T. W.
(2006). "Common fragile sites." Cancer Lett 232(1): 4-12. http://www.ncbi.nlm.nih.gov/pubmed/16229941.
Gortz, H. D.,
H. W. Kuhlmann, et al. (1999). "Intra- and intercellular
communication
systems in ciliates." Naturwissenschaften 86(9): 422-434. http://www.ncbi.nlm.nih.gov/pubmed/10501690.
Grey, C., F.
Baudat, et al. (2009). "Genome-wide control of the
distribution of meiotic
recombination." PLoS Biol 7(2):
e35. http://www.ncbi.nlm.nih.gov/pubmed/19226188.
Grey, C., V.
Sommermeyer, et al. (2011). "[What defines the genetic map?
The
specification of meiotic recombination sites]." Med Sci
(Paris) 27(1):
63-69. http://www.ncbi.nlm.nih.gov/pubmed/21299964.
Grohmann, E.,
G. Muth, et al. (2003). "Conjugative plasmid transfer in
gram-positive
bacteria." Microbiol Mol Biol Rev 67(2): 277-301. http://www.ncbi.nlm.nih.gov/pubmed/12794193.
Guo, H., L.
V. Tse, et al. (2008). "Diversity-generating retroelement
homing
regenerates target sequences for repeated rounds of codon
rewriting and protein
diversification." Mol Cell 31(6):
813-823. http://www.ncbi.nlm.nih.gov/pubmed/18922465.
Guo, H., L.
V. Tse, et al. (2011). "Target site recognition by a
diversity-generating
retroelement." PLoS Genet 7(12):
e1002414. http://www.ncbi.nlm.nih.gov/pubmed/22194701.
Guo, Y. and
H. L. Levin (2010). "High-throughput sequencing of
retrotransposon
integration provides a saturated profile of target activity
in
Schizosaccharomyces pombe." Genome Res 20(2): 239-248. http://www.ncbi.nlm.nih.gov/pubmed/20040583.
Guynet, C.,
A. Achard, et al. (2009). "Resetting the site: redirecting
integration of
an insertion sequence in a predictable way." Mol Cell
34(5): 612-619. http://www.ncbi.nlm.nih.gov/pubmed/19524540.
Haber, J. E.
(1998). "Mating-type gene switching in Saccharomyces
cerevisiae." Annu
Rev Genet 32:
561-599. http://www.ncbi.nlm.nih.gov/pubmed/9928492.
Haber, J. E.
(2006). "Transpositions and translocations induced by
site-specific
double-strand breaks in budding yeast." DNA Repair
(Amst) 5(9-10):
998-1009. http://www.ncbi.nlm.nih.gov/pubmed/16807137.
Hackney, J.
A., S. Misaghi, et al. (2009). "DNA targets of AID
evolutionary link
between antibody somatic hypermutation and class switch
recombination." Adv
Immunol 101:
163-189. http://www.ncbi.nlm.nih.gov/pubmed/19231595.
Hagemann, A.
T. and N. L. Craig (1993). "Tn7 transposition creates a
hotspot for
homologous recombination at the transposon donor site." Genetics
133(1): 9-16. http://www.ncbi.nlm.nih.gov/pubmed/8380272.
Halpern, D.,
H. Chiapello, et al. (2007). "Identification of DNA motifs
implicated in
maintenance of bacterial core genomes by predictive
modeling." PLoS
Genet 3(9):
1614-1621. http://www.ncbi.nlm.nih.gov/pubmed/17941709.
Hama, C., Z.
Ali, et al. (1990). "Region-specific recombination and
expression are
directed by portions of the Drosophila engrailed promoter."
Genes Dev
4(7): 1079-1093.
http://www.ncbi.nlm.nih.gov/pubmed/1976568.
Hare, S. and
P. Cherepanov (2009). "The Interaction Between Lentiviral
Integrase and
LEDGF: Structural and Functional Insights." Viruses
1(3): 780-801. http://www.ncbi.nlm.nih.gov/pubmed/21994569.
Hematti, P.,
B. K. Hong, et al. (2004). "Distinct genomic integration of
MLV and SIV
vectors in primate hematopoietic stem and progenitor cells."
PLoS Biol
2(12): e423. http://www.ncbi.nlm.nih.gov/pubmed/15550989.
Holmes, A.
M., A. Kaykov, et al. (2005). "Molecular and cellular
dissection of
mating-type switching steps in Schizosaccharomyces pombe." Mol
Cell
Biol 25(1):
303-311. http://www.ncbi.nlm.nih.gov/pubmed/15601851.
Honjo, T.,
K. Kinoshita, et al. (2002). "Molecular mechanism of class
switch
recombination: linkage with somatic hypermutation." Annu
Rev Immunol
20: 165-196. http://www.ncbi.nlm.nih.gov/pubmed/11861601.
Horn, C. and
A. M. Handler (2005). "Site-specific genomic targeting in
Drosophila." Proc Natl Acad Sci U S A\ 102\(35\): 12483-12488\. http://www.ncbi.nlm.nih.gov/pubmed/16116081\.
Huang, H.,
J. Y. Hong, et al. (1999). "Host genes that affect the
target-site
distribution of the yeast retrotransposon Ty1." Genetics
151(4):
1393-1407. http://www.ncbi.nlm.nih.gov/pubmed/10101165.
Huda, A., N.
J. Bowen, et al. (2011). "Epigenetic regulation of
transposable element
derived human gene promoters." Gene 475(1): 39-48. http://www.ncbi.nlm.nih.gov/pubmed/21215797.
Inlay, M.
A., H. H. Gao, et al. (2006). "Roles of the Ig kappa light
chain intronic
and 3' enhancers in Igk somatic hypermutation." J
Immunol 177(2):
1146-1151. http://www.ncbi.nlm.nih.gov/pubmed/16818772.
Ishii, H.
and Y. Furukawa (2004). "Alterations of common chromosome
fragile sites in
hematopoietic malignancies." Int J Hematol 79(3): 238-242. http://www.ncbi.nlm.nih.gov/pubmed/15168591.
Ivics, Z.,
A. Katzer, et al. (2007). "Targeted Sleeping Beauty
transposition in human
cells." Mol Ther\ 15\(6\):
1137-1144\. http://www.ncbi.nlm.nih.gov/pubmed/17426709\.
Johnson, C.
N. and L. S. Levy (2005). "Matrix attachment regions as
targets for
retroviral integration." Virol J 2: 68. http://www.ncbi.nlm.nih.gov/pubmed/16111492.
Jomantiene,
R., Y. Zhao, et al. (2007). "Sequence-variable mosaics:
composites of
recurrent transposition characterizing the genomes of
phylogenetically diverse
phytoplasmas." DNA Cell Biol 26(8):
557-564. http://www.ncbi.nlm.nih.gov/pubmed/17688407.
Jones, J.
P., 3rd, M. N. Kierlin, et al. (2005). "Retargeting mobile
group II
introns to repair mutant genes." Mol Ther 11(5): 687-694. http://www.ncbi.nlm.nih.gov/pubmed/15851007.
Juranek, S.
A. and H. J. Lipps (2007). "New insights into the
macronuclear development
in ciliates." Int Rev Cytol 262:
219-251. http://www.ncbi.nlm.nih.gov/pubmed/17631190.
Jurka, J.,
P. Klonowski, et al. (1998). "Mammalian retroposons
integrate at kinkable
DNA sites." J Biomol Struct Dyn 15(4): 717-721. http://www.ncbi.nlm.nih.gov/pubmed/9514248.
Karan, S.,
J. M. Frederick, et al. (2010). "Novel functions of
photoreceptor
guanylate cyclases revealed by targeted deletion." Mol
Cell Biochem
334(1-2):
141-155. http://www.ncbi.nlm.nih.gov/pubmed/20012162.
Karberg, M.,
H. Guo, et al. (2001). "Group II introns as controllable
gene targeting
vectors for genetic manipulation of bacteria." Nat
Biotechnol 19(12):
1162-1167. http://www.ncbi.nlm.nih.gov/pubmed/11731786.
Kassis, J.
A. (2002). "Pairing-sensitive silencing, polycomb group
response elements,
and transposon homing in Drosophila." Adv Genet 46: 421-438. http://www.ncbi.nlm.nih.gov/pubmed/11931233.
Kassis, J.
A., E. Noll, et al. (1992). "Altering the insertional
specificity of a
Drosophila transposable element." Proc Natl Acad Sci U S
A 89(5):
1919-1923. http://www.ncbi.nlm.nih.gov/pubmed/1311855.
Kauppi, L.,
M. Jasin, et al. (2007). "Meiotic crossover hotspots
contained in
haplotype block boundaries of the mouse genome." Proc
Natl Acad Sci U S
A 104(33):
13396-13401. http://www.ncbi.nlm.nih.gov/pubmed/17690247.
Ketting, R.
F., S. E. Fischer, et al. (1997). "Target choice
determinants of the Tc1
transposon of Caenorhabditis elegans." Nucleic Acids
Res\ 25\(20\):
4041-4047\. http://www.ncbi.nlm.nih.gov/pubmed/9321655\.
Kim, H. J.,
H. J. Lee, et al. (2009). "Targeted genome editing in human
cells with
zinc finger nucleases constructed via modular assembly." Genome
Res
19(7): 1279-1288.
http://www.ncbi.nlm.nih.gov/pubmed/19470664.
Kim, J. M.,
S. Vanguri, et al. (1998). "Transposable elements and genome
organization:
a comprehensive survey of retrotransposons revealed by the
complete
Saccharomyces cerevisiae genome sequence." Genome Res
8(5): 464-478. http://www.ncbi.nlm.nih.gov/pubmed/9582191.
Kinoshita,
K. and T. Honjo (2001). "Linking class-switch recombination
with somatic
hypermutation." Nat Rev Mol Cell Biol 2(7): 493-503. http://www.ncbi.nlm.nih.gov/pubmed/11433363.
Kirchner,
J., C. M. Connolly, et al. (1995). "Requirement of RNA
polymerase III
transcription factors for in vitro position-specific
integration of a
retroviruslike element." Science 267(5203): 1488-1491. http://www.ncbi.nlm.nih.gov/pubmed/7878467.
Kiss, J., Z.
Nagy, et al. (2007). "Transposition and target specificity
of the typical
IS30 family element IS1655 from Neisseria meningitidis." Mol
Microbiol
63(6): 1731-1747.
http://www.ncbi.nlm.nih.gov/pubmed/17367392.
Klar, A. J.
(2007). "Lessons learned from studies of fission yeast
mating-type
switching and silencing." Annu Rev Genet 41: 213-236. http://www.ncbi.nlm.nih.gov/pubmed/17614787.
Klar, A. J.,
A. V. Ivanova, et al. (1998). "Multiple epigenetic events
regulate
mating-type switching of fission yeast." Novartis Found
Symp 214:
87-99; discussion 99-103. http://www.ncbi.nlm.nih.gov/pubmed/9601013.
Kojima, K.
K. and M. Kanehisa (2008). "Systematic survey for novel
types of
prokaryotic retroelements based on gene neighborhood and
protein
architecture." Mol Biol Evol 25(7):
1395-1404. http://www.ncbi.nlm.nih.gov/pubmed/18391066.
Komano, T.
(1999). "Shufflons: multiple inversion systems and
integrons." Annu
Rev Genet 33:
171-191. http://www.ncbi.nlm.nih.gov/pubmed/10690407.
Komano, T.,
S. R. Kim, et al. (1994). "DNA rearrangement of the shufflon
determines
recipient specificity in liquid mating of IncI1 plasmid
R64." J Mol
Biol 243(1):
6-9. http://www.ncbi.nlm.nih.gov/pubmed/7932741.
Kordis, D.
(2005). "A genomic perspective on the
chromodomain-containing
retrotransposons: Chromoviruses." Gene 347(2): 161-173. http://www.ncbi.nlm.nih.gov/pubmed/15777633.
Labrador, M.
and V. G. Corces (2001). "Protein determinants of
insertional specificity
for the Drosophila gypsy retrovirus." Genetics 158(3): 1101-1110. http://www.ncbi.nlm.nih.gov/pubmed/11454759.
Labrador,
M., K. Sha, et al. (2008). "Insulator and Ovo proteins
determine the
frequency and specificity of insertion of the gypsy
retrotransposon in
Drosophila melanogaster." Genetics 180(3): 1367-1378. http://www.ncbi.nlm.nih.gov/pubmed/18791225.
Lacroix, B.
and V. Citovsky (2009). "Agrobacterium aiming for the host
chromatin: Host
and bacterial proteins involved in interactions between
T-DNA and plant
nucleosomes." Commun Integr Biol 2(1): 42-45. http://www.ncbi.nlm.nih.gov/pubmed/19513263.
Le Beau, M.
M. (1986). "Chromosomal fragile sites and cancer-specific
rearrangements." Blood 67(4):
849-858. http://www.ncbi.nlm.nih.gov/pubmed/3513870.
Lee, G. S.,
M. B. Neiditch, et al. (2002). "Targeted transposition by
the V(D)J
recombinase." Mol Cell Biol 22(7):
2068-2077. http://www.ncbi.nlm.nih.gov/pubmed/11884595.
Leem, Y. E.,
T. L. Ripmaster, et al. (2008). "Retrotransposon Tf1 is
targeted to Pol II
promoters by transcription activators." Mol Cell 30(1): 98-107. http://www.ncbi.nlm.nih.gov/pubmed/18406330.
Lepere, G.,
M. Betermier, et al. (2008). "Maternal noncoding transcripts
antagonize
the targeting of DNA elimination by scanRNAs in Paramecium
tetraurelia." Genes
Dev 22(11):
1501-1512. http://www.ncbi.nlm.nih.gov/pubmed/18519642.
Levin, A.,
J. Rosenbluh, et al. (2010). "Integration of HIV-1 DNA is
regulated by
interplay between viral rev and cellular LEDGF/p75
proteins." Mol Med
16(1-2): 34-44. http://www.ncbi.nlm.nih.gov/pubmed/19855849.
Levy, A., S.
Schwartz, et al. (2010). "Large-scale discovery of insertion
hotspots and
preferential integration sites of human transposed
elements." Nucleic
Acids Res 38(5):
1515-1530. http://www.ncbi.nlm.nih.gov/pubmed/20008508.
Lewinski, M.
K., M. Yamashita, et al. (2006). "Retroviral DNA
integration: viral and
cellular determinants of target-site selection." PLoS
Pathog 2(6):
e60. http://www.ncbi.nlm.nih.gov/pubmed/16789841.
Li, T., S.
Huang, et al. (2011). "TAL nucleases (TALNs): hybrid
proteins composed of
TAL effectors and FokI DNA-cleavage domain." Nucleic
Acids Res 39(1):
359-372. http://www.ncbi.nlm.nih.gov/pubmed/20699274.
Lim, K. I.,
R. Klimczak, et al. (2010). "Specific insertions of zinc
finger domains
into Gag-Pol yield engineered retroviral vectors with
selective integration
properties." Proc Natl Acad Sci U S A 107(28): 12475-12480. http://www.ncbi.nlm.nih.gov/pubmed/20616052.
Linheiro, R.
S. and C. M. Bergman (2008). "Testing the palindromic target
site model
for DNA transposon insertion using the Drosophila
melanogaster P-element."
Nucleic Acids Res 36(19):
6199-6208. http://www.ncbi.nlm.nih.gov/pubmed/18829720.
Liu, S., C.
T. Yeh, et al. (2009). "Mu transposon insertion sites and
meiotic
recombination events co-localize with epigenetic marks for
open chromatin
across the maize genome." PLoS Genet 5(11): e1000733. http://www.ncbi.nlm.nih.gov/pubmed/19936291.
Llano, M.,
D. T. Saenz, et al. (2006). "An essential role for LEDGF/p75
in HIV
integration." Science 314(5798):
461-464. http://www.ncbi.nlm.nih.gov/pubmed/16959972.
Loot, C., C.
Turlan, et al. (2004). "Host processing of branched DNA
intermediates is
involved in targeted transposition of IS911." Mol
Microbiol 51(2):
385-393. http://www.ncbi.nlm.nih.gov/pubmed/14756780.
Mahfouz, M.
M., L. Li, et al. (2011). "De novo-engineered transcription
activator-like
effector (TALE) hybrid nuclease with novel DNA binding
specificity creates
double-strand breaks." Proc Natl Acad Sci U S A 108(6): 2623-2628.
http://www.ncbi.nlm.nih.gov/pubmed/21262818.
Martini, E.
and S. Keeney (2002). "Sex and the single (double-strand)
break." Mol
Cell 9(4):
700-702. http://www.ncbi.nlm.nih.gov/pubmed/11983162.
Mastroianni,
M., K. Watanabe, et al. (2008). "Group II intron-based gene
targeting
reactions in eukaryotes." PLoS One 3(9): e3121. http://www.ncbi.nlm.nih.gov/pubmed/18769669.
Mathas, S.,
S. Kreher, et al. (2009). "Gene deregulation and spatial
genome
reorganization near breakpoints prior to formation of
translocations in
anaplastic large cell lymphoma." Proc Natl Acad Sci U S
A 106(14):
5831-5836. http://www.ncbi.nlm.nih.gov/pubmed/19321746.
Maughan, H.,
L. A. Wilson, et al. (2010). "Bacterial DNA Uptake Sequences
Can
Accumulate by Molecular Drive Alone." Genetics 186(2): 613-627. http://www.ncbi.nlm.nih.gov/pubmed/20628039\.
Maul, R. W.
and P. J. Gearhart (2010). "AID and somatic hypermutation."
Adv
Immunol 105:
159-191. http://www.ncbi.nlm.nih.gov/pubmed/20510733.
Maul, R. W.
and P. J. Gearhart (2010). "Controlling somatic
hypermutation in
immunoglobulin variable and switch regions." Immunol Res
47(1-3): 113-122.
http://www.ncbi.nlm.nih.gov/pubmed/20082153.
McVean, G.
(2010). "What drives recombination hotspots to repeat DNA in
humans?"
Philos Trans R Soc Lond B Biol Sci 365(1544):
1213-1218. http://www.ncbi.nlm.nih.gov/pubmed/20308096.
Medhekar, B.
and J. F. Miller (2007). "Diversity-generating
retroelements." Curr
Opin Microbiol 10(4):
388-395. http://www.ncbi.nlm.nih.gov/pubmed/17703991.
Mezard, C.
(2006). "Meiotic recombination hotspots in plants." Biochem
Soc
Trans 34(Pt
4): 531-534. http://www.ncbi.nlm.nih.gov/pubmed/16856852.
Miller, J.
L., J. Le Coq, et al. (2008). "Selective ligand recognition
by a
diversity-generating retroelement variable protein." PLoS
Biol 6(6):
e131. http://www.ncbi.nlm.nih.gov/pubmed/18532877.
Mitchell, R.
S., B. F. Beitzel, et al. (2004). "Retroviral DNA
integration: ASLV, HIV,
and MLV show distinct target site preferences." PLoS
Biol 2(8):
E234. http://www.ncbi.nlm.nih.gov/pubmed/15314653.
Moalic, Y.,
Y. Blanchard, et al. (2006). "Porcine endogenous retrovirus
integration
sites in the human genome: features in common with those of
murine leukemia
virus." J Virol 80(22):
10980-10988. http://www.ncbi.nlm.nih.gov/pubmed/16928752.
Mohr, G., D.
Smith, et al. (2000). "Rules for DNA target-site recognition
by a
lactococcal group II intron enable retargeting of the intron
to specific DNA
sequences." Genes Dev 14(5):
559-573. http://www.ncbi.nlm.nih.gov/pubmed/10716944.
Moriarty, H.
T. and L. R. Webster (2003). "Fragile sites and bladder
cancer." Cancer
Genet Cytogenet 140(2): 89-98. http://www.ncbi.nlm.nih.gov/pubmed/12645645.
Mou, Z., A.
E. Kenny, et al. (2006). "Hos2 and Set3 promote integration
of Ty1
retrotransposons at tRNA genes in Saccharomyces cerevisiae."
Genetics
172(4):
2157-2167. http://www.ncbi.nlm.nih.gov/pubmed/16415356.
Muller, A.
E., R. G. Atkinson, et al. (2007). "Microhomologies between
T-DNA ends and
target sites often occur in inverted orientation and may be
responsible for the
high frequency of T-DNA-associated inversions." Plant
Cell Rep 26(5):
617-630. http://www.ncbi.nlm.nih.gov/pubmed/17205344.
Naito, K.,
F. Zhang, et al. (2009). "Unexpected consequences of a
sudden and massive
transposon amplification on rice gene expression." Nature
461(7267):
1130-1134. http://www.ncbi.nlm.nih.gov/pubmed/19847266.
Nash, H. A.
(1981). "Integration and excision of bacteriophage lambda:
the mechanism
of conservation site specific recombination." Annu Rev
Genet 15:
143-167. http://www.ncbi.nlm.nih.gov/pubmed/6461289.
Nicolas, A.
(2009). "Modulating and targeting meiotic double-strand
breaks in
Saccharomyces cerevisiae." Methods Mol Biol 557: 27-33. http://www.ncbi.nlm.nih.gov/pubmed/19799174.
Nishant, K.
T. and M. R. Rao (2006). "Molecular features of meiotic
recombination hot
spots." Bioessays 28(1):
45-56. http://www.ncbi.nlm.nih.gov/pubmed/16369948.
Nnalue, N.
A. (1990). "Tn7 inserts in both orientations at a single
chromosomal
location and apparently forms cointegrates in Pasteurella
multocida." Mol
Microbiol 4(1):
107-117. http://www.ncbi.nlm.nih.gov/pubmed/2157128.
Novikova, O.
(2009). "Chromodomains and LTR retrotransposons in plants."
Commun
Integr Biol 2(2):
158-162. http://www.ncbi.nlm.nih.gov/pubmed/19513271.
Nunvar, J.,
T. Huckova, et al. (2010). "Identification and
characterization of
repetitive extragenic palindromes (REP)-associated tyrosine
transposases:
implications for REP evolution and dynamics in bacterial
genomes." BMC
Genomics 11(1):
44. http://www.ncbi.nlm.nih.gov/pubmed/20085626.
O'Keefe, L.
V. and R. I. Richards (2006). "Common chromosomal fragile
sites and
cancer: focus on FRA16D." Cancer Lett 232(1): 37-47. http://www.ncbi.nlm.nih.gov/pubmed/16242840.
Odegard, V.
H., S. T. Kim, et al. (2005). "Histone modifications
associated with
somatic hypermutation." Immunity 23(1): 101-110. http://www.ncbi.nlm.nih.gov/pubmed/16039583.
Odegard, V.
H. and D. G. Schatz (2006). "Targeting of somatic
hypermutation." Nat
Rev Immunol 6(8):
573-583. http://www.ncbi.nlm.nih.gov/pubmed/16868548.
Paigen, K.
and P. Petkov (2010). "Mammalian recombination hot spots:
properties,
control and evolution." Nat Rev Genet 11(3): 221-233. http://www.ncbi.nlm.nih.gov/pubmed/20168297.
Palmer, G.
H., T. Bankhead, et al. (2009). "'Nothing is permanent but
change'-
antigenic variation in persistent bacterial pathogens." Cell
Microbiol
11(12):
1697-1705. http://www.ncbi.nlm.nih.gov/pubmed/19709057.
Palmer, G.
H. and K. A. Brayton (2007). "Gene conversion is a
convergent strategy for
pathogen antigenic variation." Trends Parasitol 23(9): 408-413. http://www.ncbi.nlm.nih.gov/pubmed/17662656.
Palmer, G.
H., J. E. Futse, et al. (2006). "Insights into mechanisms of
bacterial
antigenic variation derived from the complete genome
sequence of Anaplasma
marginale." Ann N Y Acad Sci 1078:
15-25. http://www.ncbi.nlm.nih.gov/pubmed/17114676.
Pardue, M.
L. and P. G. DeBaryshe (2003). "Retrotransposons provide an
evolutionarily
robust non-telomerase mechanism to maintain telomeres." Annu
Rev Genet
37: 485-511. http://www.ncbi.nlm.nih.gov/pubmed/14616071.
Parker, C.,
E. Becker, et al. (2005). "Elements in the co-evolution of
relaxases and
their origins of transfer." Plasmid 53(2): 113-118. http://www.ncbi.nlm.nih.gov/pubmed/15737398.
Parks, A.
R., Z. Li, et al. (2009). "Transposition into replicating
DNA occurs
through interaction with the processivity factor." Cell
138(4): 685-695.
http://www.ncbi.nlm.nih.gov/pubmed/19703395.
Parks, A. R.
and J. E. Peters (2009). "Tn7 elements: engendering
diversity from
chromosomes to episomes." Plasmid 61(1): 1-14. http://www.ncbi.nlm.nih.gov/pubmed/18951916.
Parvanov, E.
D., S. H. Ng, et al. (2009). "Trans-regulation of mouse
meiotic
recombination hotspots by Rcr1." PLoS Biol 7(2): e36. http://www.ncbi.nlm.nih.gov/pubmed/19226189.
Pelczar, P.,
V. Kalck, et al. (2004). "Agrobacterium proteins VirD2 and
VirE2 mediate
precise integration of synthetic T-DNA complexes in
mammalian cells." EMBO
Rep 5(6):
632-637. http://www.ncbi.nlm.nih.gov/pubmed/15153934.
Peters, J.
E. and N. L. Craig (2000). "Tn7 transposes proximal to DNA
double-strand
breaks and into regions where chromosomal DNA replication
terminates." Mol
Cell 6(3):
573-582. http://www.ncbi.nlm.nih.gov/pubmed/11030337.
Peters, J.
E. and N. L. Craig (2001). "Tn7 recognizes transposition
target structures
associated with DNA replication using the DNA-binding
protein TnsE." Genes
Dev 15(6):
737-747. http://www.ncbi.nlm.nih.gov/pubmed/11274058.
Pichiorri,
F., H. Ishii, et al. (2008). "Molecular parameters of genome
instability:
roles of fragile genes at common fragile sites." J Cell
Biochem 104(5):
1525-1533. http://www.ncbi.nlm.nih.gov/pubmed/18393361.
Post, V. and
R. M. Hall (2009). "Insertion sequences in the IS1111 family
that target
the attC recombination sites of integron-associated gene
cassettes." FEMS
Microbiol Lett 290(2):
182-187. http://www.ncbi.nlm.nih.gov/pubmed/19025573.
Preclin, V.,
E. Martin, et al. (2003). "Target sequences of Tc1, Tc3 and
Tc5
transposons of Caenorhabditis elegans." Genet Res 82(2): 85-88. http://www.ncbi.nlm.nih.gov/pubmed/14768892.
Prescott, D.
M. (2000). "Genome gymnastics: unique modes of DNA evolution
and
processing in ciliates." Nat Rev Genet 1(3): 191-198. http://www.ncbi.nlm.nih.gov/pubmed/11252748.
Pryce, D. W.
and R. J. McFarlane (2009). "The meiotic recombination
hotspots of
Schizosaccharomyces pombe." Genome Dyn 5: 1-13. http://www.ncbi.nlm.nih.gov/pubmed/18948703.
Rain, J. C.,
A. Cribier, et al. (2009). "Yeast two-hybrid detection of
integrase-host
factor interactions." Methods 47(4):
291-297. http://www.ncbi.nlm.nih.gov/pubmed/19232540.
Rawal, K.
and R. Ramaswamy (2011). "Genome-wide analysis of mobile
genetic element
insertion sites." Nucleic Acids Res 39(16): 6864-6878. http://www.ncbi.nlm.nih.gov/pubmed/21609951.
Repanas, K.,
N. Zingler, et al. (2007). "Determinants for DNA target
structure
selectivity of the human LINE-1 retrotransposon
endonuclease." Nucleic
Acids Res 35(14):
4914-4926. http://www.ncbi.nlm.nih.gov/pubmed/17626046.
Robart, A.
R., W. Seo, et al. (2007). "Insertion of group II intron
retroelements
after intrinsic transcriptional terminators." Proc Natl
Acad Sci U S A
104(16):
6620-6625. http://www.ncbi.nlm.nih.gov/pubmed/17420455.
Rousseau,
P., C. Loot, et al. (2007). "Control of IS911 target
selection: how OrfA
may ensure IS dispersion." Mol Microbiol 63(6): 1701-1709. http://www.ncbi.nlm.nih.gov/pubmed/17367389.
Ruiz-Herrera,
A. and T. J. Robinson (2007). "Chromosomal instability in
Afrotheria:
fragile sites, evolutionary breakpoints and phylogenetic
inference from genome
sequence assemblies." BMC Evol Biol 7: 199. http://www.ncbi.nlm.nih.gov/pubmed/17958882.
Rusche, L.
N. and J. Rine (2010). "Switching the mechanism of mating
type switching:
a domesticated transposase supplants a domesticated homing
endonuclease." Genes
Dev 24(1):
10-14. http://www.ncbi.nlm.nih.gov/pubmed/20047997.
Sandrin, V.,
S. J. Russell, et al. (2003). "Targeting retroviral and
lentiviral
vectors." Curr Top Microbiol Immunol 281: 137-178. http://www.ncbi.nlm.nih.gov/pubmed/12932077.
Santoni, F.
A., O. Hartley, et al. (2010). "Deciphering the code for
retroviral
integration target site selection." PLoS Comput Biol\
6\(11\):
e1001008\. http://www.ncbi.nlm.nih.gov/pubmed/21124862\.
Segurel, L.,
E. M. Leffler, et al. (2011). "The Case of the Fickle
Fingers: How the
PRDM9 Zinc Finger Protein Specifies Meiotic Recombination
Hotspots in
Humans." PLoS Biol 9(12):
e1001211. http://www.ncbi.nlm.nih.gov/pubmed/22162947.
Shi, Q., A.
R. Parks, et al. (2008). "DNA damage differentially
activates regional
chromosomal loci for Tn7 transposition in Escherichia coli."
Genetics
179(3):
1237-1250. http://www.ncbi.nlm.nih.gov/pubmed/18562643.
Silverman,
M., J. Zieg, et al. (1979). "Phase variation in Salmonella:
genetic
analysis of a recombinational switch." Proc Natl Acad
Sci U S A 76(1):
391-395. http://www.ncbi.nlm.nih.gov/pubmed/370828.
Singleton,
T. L. and H. L. Levin (2002). "A long terminal repeat
retrotransposon of
fission yeast has strong preferences for specific sites of
insertion." Eukaryot
Cell 1(1):
44-55. http://www.ncbi.nlm.nih.gov/pubmed/12455970.
Siol, O., M.
Boutliliss, et al. (2006). "Role of RNA polymerase III
transcription factors
in the selection of integration sites by the dictyostelium
non-long terminal
repeat retrotransposon TRE5-A." Mol Cell Biol 26(22): 8242-8251. http://www.ncbi.nlm.nih.gov/pubmed/16982688.
Siol, O., T.
Spaller, et al. (2011). "Genetically tagged TRE5-A
retrotransposons reveal
high amplification rates and authentic target site
preference in the
Dictyostelium discoideum genome." Nucleic Acids Res
39(15):
6608-6619. http://www.ncbi.nlm.nih.gov/pubmed/21525131.
Smagulova,
F., I. V. Gregoretti, et al. (2011). "Genome-wide analysis
reveals novel
molecular features of mouse recombination hotspots." Nature.
http://www.ncbi.nlm.nih.gov/pubmed/21460839.
Smith, D.
I., S. McAvoy, et al. (2007). "Large common fragile site
genes and
cancer." Semin Cancer Biol\ 17\(1\):
31-41\. http://www.ncbi.nlm.nih.gov/pubmed/17140807\.
Smith, G. R.
(1994). "Hotspots of homologous recombination." Experientia
50(3): 234-241. http://www.ncbi.nlm.nih.gov/pubmed/8143797.
Smith, H.
O., M. L. Gwinn, et al. (1999). "DNA uptake signal sequences
in naturally
transformable bacteria." Res Microbiol 150(9-10): 603-616. http://www.ncbi.nlm.nih.gov/pubmed/10673000.
Sourice, S.,
V. Biaudet, et al. (1998). "Identification of the Chi site
of Haemophilus
influenzae as several sequences related to the Escherichia
coli Chi site."
Mol Microbiol 27(5):
1021-1029.
http://www.ncbi.nlm.nih.gov/pubmed/9535091.
Spradling,
A. C., D. M. Stern, et al. (1995). "Gene disruptions using P
transposable
elements: an integral component of the Drosophila genome
project." Proc
Natl Acad Sci U S A 92(24):
10824-10830. http://www.ncbi.nlm.nih.gov/pubmed/7479892.
Steiner, W.
W., P. A. Davidow, et al. (2011). "Important Characteristics
of
Sequence-Specific Recombination Hotspots in
Schizosaccharomyces pombe." Genetics
187(2): 385-396.
http://www.ncbi.nlm.nih.gov/pubmed/21098718.
Steiner, W.
W., E. M. Steiner, et al. (2009). "Novel nucleotide sequence
motifs that
produce hotspots of meiotic recombination in
Schizosaccharomyces pombe." Genetics
182(2): 459-469.
http://www.ncbi.nlm.nih.gov/pubmed/19363124.
Szafranski,
K., G. Glockner, et al. (1999). "Non-LTR retrotransposons
with unique
integration preferences downstream of Dictyostelium
discoideum tRNA
genes." Mol Gen Genet 262(4-5):
772-780. http://www.ncbi.nlm.nih.gov/pubmed/10628860.
Szekvolgyi,
L. and A. Nicolas (2010). "From meiosis to postmeiotic
events: homologous
recombination is obligatory but flexible." FEBS J 277(3): 571-589. http://www.ncbi.nlm.nih.gov/pubmed/20015080.
Taillebourg,
E. and J. M. Dura (1999). "A novel mechanism for P element
homing in
Drosophila." Proc Natl Acad Sci U S A 96(12): 6856-6861. http://www.ncbi.nlm.nih.gov/pubmed/10359803.
Tanaka, A.,
H. M. Shen, et al. (2010). "Attracting AID to targets of
somatic
hypermutation." J Exp Med 207(2):
405-415. http://www.ncbi.nlm.nih.gov/pubmed/20100870.
Timakov, B.,
X. Liu, et al. (2002). "Timing and targeting of P-element
local
transposition in the male germline cells
of Drosophila melanogaster." Genetics 160(3): 1011-1022. http://www.ncbi.nlm.nih.gov/pubmed/11901118.
Tobes, R.
and E. Pareja (2006). "Bacterial repetitive extragenic
palindromic
sequences are DNA targets for Insertion Sequence elements."
BMC
Genomics 7:
62. http://www.ncbi.nlm.nih.gov/pubmed/16563168.
Toor, N., K.
Rajashankar, et al. (2008). "Structural basis for exon
recognition by a
group II intron." Nat Struct Mol Biol 15(11): 1221-1222. http://www.ncbi.nlm.nih.gov/pubmed/18953333.
Tsai, C. L.,
M. Chatterji, et al. (2003). "DNA mismatches and GC-rich
motifs target
transposition by the RAG1/RAG2 transposase." Nucleic
Acids Res 31(21):
6180-6190. http://www.ncbi.nlm.nih.gov/pubmed/14576304.
Tsai, I. J.,
A. Burt, et al. (2010). "Conservation of recombination
hotspots in
yeast." Proc Natl Acad Sci U S A 107(17): 7847-7852. http://www.ncbi.nlm.nih.gov/pubmed/20385822.
Uchiyama,
T., K. Fujino, et al. (2009). "Stable transcription
activities dependent
on an orientation of Tam3 transposon insertions into
Antirrhinum and yeast
promoters occur only within chromatin." Plant Physiol
151(3):
1557-1569. http://www.ncbi.nlm.nih.gov/pubmed/19759347.
Urnov, F.
D., E. J. Rebar, et al. (2010). "Genome editing with
engineered zinc
finger nucleases." Nat Rev Genet 11(9): 636-646. http://www.ncbi.nlm.nih.gov/pubmed/20717154.
Van Maele,
B., K. Busschots, et al. (2006). "Cellular co-factors of
HIV-1
integration." Trends Biochem Sci 31(2): 98-105. http://www.ncbi.nlm.nih.gov/pubmed/16403635.
Vasquez, K.
M. (2010). "Targeting and processing of site-specific DNA
interstrand
crosslinks." Environ Mol Mutagen 51(6): 527-539. http://www.ncbi.nlm.nih.gov/pubmed/20196133.
Voigt, K.,
Z. Izsvak, et al. (2008). "Targeted gene insertion for
molecular
medicine." J Mol Med 86(11):
1205-1219. http://www.ncbi.nlm.nih.gov/pubmed/18607557.
Wahls, W. P.
and M. K. Davidson (2010). "Discrete DNA sites regulate
global
distribution of meiotic recombination." Trends Genet
26(5): 202-208. http://www.ncbi.nlm.nih.gov/pubmed/20381894.
Walser, J.
C., B. Chen, et al. (2006). "Heat-shock promoters: targets
for evolution
by P transposable elements in Drosophila." PLoS Genet
2(10): e165. http://www.ncbi.nlm.nih.gov/pubmed/17029562.
Wang, Y., S.
D. Goodman, et al. (2002). "Natural transformation and DNA
uptake signal
sequences in Actinobacillus actinomycetemcomitans." J
Bacteriol 184(13):
3442-3449. http://www.ncbi.nlm.nih.gov/pubmed/12057937.
Weinthal,
D., A. Tovkach, et al. (2010). "Genome editing in plant
cells by zinc
finger nucleases." Trends Plant Sci 15(6): 308-321. http://www.ncbi.nlm.nih.gov/pubmed/20347379.
Weng, R., Y.
W. Chen, et al. (2009). "Recombinase-mediated cassette
exchange provides a
versatile platform for gene targeting: knockout of miR-31b."
Genetics
183(1): 399-402.
http://www.ncbi.nlm.nih.gov/pubmed/19564483.
Winckler,
T., K. Szafranski, et al. (2005). "Transfer RNA
gene-targeted integration:
an adaptation of retrotransposable elements to survive in
the compact
Dictyostelium discoideum genome." Cytogenet Genome Res
110(1-4):
288-298. http://www.ncbi.nlm.nih.gov/pubmed/16093681.
Wolkow, C.
A., R. T. DeBoy, et al. (1996). "Conjugating plasmids are
preferred
targets for Tn7." Genes Dev 10(17):
2145-2157. http://www.ncbi.nlm.nih.gov/pubmed/8804309.
Wu, X. and
S. M. Burgess (2004). "Integration target site selection for
retroviruses
and transposable elements." Cell Mol Life Sci 61(19-20): 2588-2596. http://www.ncbi.nlm.nih.gov/pubmed/15526164.
Wu, X., Y.
Li, et al. (2003). "Transcription start regions in the human
genome are
favored targets for MLV integration." Science 300(5626): 1749-1751. http://www.ncbi.nlm.nih.gov/pubmed/12805549.
Wu, Z. K.,
I. V. Getun, et al. (2010). "Anatomy of mouse recombination
hot
spots." Nucleic Acids Res 38(7):
2346-2354. http://www.ncbi.nlm.nih.gov/pubmed/20081202.
Xiang, Y.
and W. T. Garrard (2008). "The Downstream Transcriptional
Enhancer, Ed,
positively regulates mouse Ig kappa gene expression and
somatic
hypermutation." J Immunol 180(10):
6725-6732. http://www.ncbi.nlm.nih.gov/pubmed/18453592.
Xie, W., X.
Gai, et al. (2001). "Targeting of the yeast Ty5
retrotransposon to silent
chromatin is mediated by interactions between integrase and
Sir4p." Mol
Cell Biol 21(19):
6606-6614. http://www.ncbi.nlm.nih.gov/pubmed/11533248.
Xiong, Y.,
W. D. Burke, et al. (1988). "Ribosomal DNA insertion
elements R1Bm and
R2Bm can transpose in a sequence specific manner to
locations outside the 28S
genes." Nucleic Acids Res 16(22):
10561-10573. http://www.ncbi.nlm.nih.gov/pubmed/2849750.
Xiong, Y.
and T. H. Eickbush (1988). "The site-specific ribosomal DNA
insertion
element R1Bm belongs to a class of non-long-terminal-repeat
retrotransposons." Mol Cell Biol 8(1): 114-123. http://www.ncbi.nlm.nih.gov/pubmed/2447482.
Xiong, Y. E.
and T. H. Eickbush (1988). "Functional expression of a
sequence-specific
endonuclease encoded by the retrotransposon R2Bm." Cell
55(2): 235-246. http://www.ncbi.nlm.nih.gov/pubmed/2844414.
Yamada-Inagawa,
T., A. J. Klar, et al. (2007). "Schizosaccharomyces pombe
switches mating
type by the synthesis-dependent strand-annealing mechanism."
Genetics
177(1): 255-265.
http://www.ncbi.nlm.nih.gov/pubmed/17660548.
Yang, S. Y.,
S. D. Fugmann, et al. (2006). "Control of gene conversion
and somatic
hypermutation by immunoglobulin promoter and enhancer
sequences." J Exp
Med 203(13):
2919-2928. http://www.ncbi.nlm.nih.gov/pubmed/17178919.
Yang, S. Y.
and D. G. Schatz (2007). "Targeting of AID-mediated sequence
diversification by cis-acting determinants." Adv Immunol
94: 109-125. http://www.ncbi.nlm.nih.gov/pubmed/17560273.
Yao, J. and
A. M. Lambowitz (2007). "Gene targeting in gram-negative
bacteria by use
of a mobile group II intron ("Targetron") expressed from a
broad-host-range vector." Appl Environ Microbiol 73(8): 2735-2743.
http://www.ncbi.nlm.nih.gov/pubmed/17322321.
Yu, B. J.
and C. Kim (2008). "Minimization of the Escherichia coli
genome using the
Tn5-targeted Cre/loxP excision system." Methods Mol Biol
416: 261-277. http://www.ncbi.nlm.nih.gov/pubmed/18392973.
Yunis, J. J.
(1987). "Multiple recurrent genomic rearrangements and
fragile sites in
human cancer." Somat Cell Mol Genet 13(4): 397-403. http://www.ncbi.nlm.nih.gov/pubmed/3331831.
Zhang, X.
Y., R. H. Kutner, et al. (2010). "Cell-specific targeting of
lentiviral
vectors mediated by fusion proteins derived from Sindbis
virus, vesicular
stomatitis virus, or avian sarcoma/leukosis virus." Retrovirology
7: 3. http://www.ncbi.nlm.nih.gov/pubmed/20100344.
Zhang, Z.
and M. H. Saier, Jr. (2009). "A mechanism of
transposon-mediated directed
mutation." Mol Microbiol 74(1):
29-43. http://www.ncbi.nlm.nih.gov/pubmed/19682247.
Zhang, Z.,
M. R. Yen, et al. (2010). "Precise excision of IS5 from the
intergenic
region between the fucPIK and the fucAO operons and
mutational control of
fucPIK operon expression in Escherichia coli." J
Bacteriol 192(7):
2013-2019. http://www.ncbi.nlm.nih.gov/pubmed/20097855.
Zheng, Y.,
Z. Ao, et al. (2010). "Characterization of the HIV-1
integrase chromatin-
and LEDGF/p75-binding abilities by mutagenic analysis within
the catalytic core
domain of integrase." Virol J 7:
68. http://www.ncbi.nlm.nih.gov/pubmed/20331877.
Zhong, J.,
M. Karberg, et al. (2003). "Targeted and random bacterial
gene disruption
using a group II intron (targetron) vector containing a
retrotransposition-activated selectable marker." Nucleic
Acids Res 31(6):
1656-1664. http://www.ncbi.nlm.nih.gov/pubmed/12626707.
Zhu, Y., J.
Dai, et al. (2003). "Controlling integration specificity of
a yeast
retrotransposon." Proc Natl Acad Sci U S A 100(10): 5891-5895. http://www.ncbi.nlm.nih.gov/pubmed/12730380.
Zhu, Y., S.
Zou, et al. (1998). "Tagging chromatin with
retrotransposons: target
specificity of the Saccharomyces Ty5 retrotransposon changes
with the
chromosomal localization of Sir3p and Sir4p." Genes Dev
13(20):
2738-2749. http://www.ncbi.nlm.nih.gov/pubmed/10541559.
Zhuang, F.,
M. Mastroianni, et al. (2009). "Linear group II intron RNAs
can retrohome
in eukaryotes and may use nonhomologous end-joining for cDNA
ligation." Proc
Natl Acad Sci U S A 106(43):
18189-18194. http://www.ncbi.nlm.nih.gov/pubmed/19833873.
Ziegler, L.,
L. Yang, et al. (2008). "Targeting lentiviral vectors to
antigen-specific
immunoglobulins." Hum Gene Ther\ 19\(9\): 861-872\. http://www.ncbi.nlm.nih.gov/pubmed/18590376\.
Zou, S., N.
Ke, et al. (1996). "The Saccharomyces retrotransposon Ty5
integrates
preferentially into regions of silent chromatin at the
telomeres and mating
loci." Genes Dev 10(5):
634-645. http://www.ncbi.nlm.nih.gov/pubmed/8598292.
Zou, S. and
D. F. Voytas (1997). "Silent chromatin determines target
preference of the
Saccharomyces retrotransposon Ty5." Proc Natl Acad Sci U
S A 94(14):
7412-7416. http://www.ncbi.nlm.nih.gov/pubmed/9207105.