Examples of inter-phylum adaptive horizontal DNA transfers based on genomic data

Donor

Recipient

Function(s)

Reference(s)

Prokaryote-prokaryote (Koonin 2016)

Bacteria

Methanogenic Archaea

(early Haloarchaea)

1,089 transfers, carbon metabolism, membrane transporters, menaquinone biosynthesis, and complexes I-IV of the eubacterial respiratory chain; converted strictly anaerobic, chemolithoautotrophic methanogen into heterotrophic, oxygen-respiring haloarchaeal common ancestor.

(Nelson-Sathi, Dagan et al. 2012)

Bacteria

Methanogenic Archaea Methosarcina spp.

~5-11% of genetic loci, including gluconeogenesis, proline biosynthesis, transport processes, DNA-repair, environmental sensing, gene regulation, and stress response, such as the bacterial GroEL/GroES chaperone system and the presence of tetrahydrofolate-dependent enzymes

(Deppenmeier, Johann et al. 2002; Garushyants, Kazanov et al. 2015)

Bacteria

Mesophilic clades descended from thermophilic Archaea: Thaumarchaeota, MG II/III euryarchaeotes, Halobacteriales

Mesophilic metabolic activites (energy conversion, amino acid transport and metabolism, and lipid or membrane biogenesis): Thaumarchaeota (937 loci), MG II/III euryarchaeotes (1677 loci), Halobacteriales (1047 loci)

(Deschamps, Zivanovic et al. 2014; Lopez-Garcia, Zivanovic et al. 2015)

Bacteria

Early Archaeal progenitors

“13 archaeal higher taxa…correspond to 2,264 group-specific gene acquisitions from bacteria”

(Nelson-Sathi, Sousa et al. 2015; Groussin, Boussau et al. 2016)

Prokaryote-eukaryote microbe (Marcet-Houben and Gabaldon 2009; Soanes and Richards 2014)

Actinobacterium

Basidiomycete Agaricomycotina

Alpha-amylase

(Da Lage, Binder et al. 2013)

Bacteria

Plant pathogenic fungi Pyrenophora teres and Pyrenophora tritici-repentis

Extracellular proteins, interference with plant defense-response, degradation of plant cell walls, carbohydrate metabolism

(Sun, Xiao et al. 2013; Soanes and Richards 2014)

Bacteria (40%), fungi (25%), and viruses (22%)

Animal pathogenic fungus Aspergillus fumigatus

Central and intermediary metabolism, virulence (including lipase, 4 peptide transporters, gliotoxin synthesis)

(Mallet, Becq et al. 2010)

Bacteria and Archaea

Red alga Galdieria sulphuraria

Growth in high temperature, toxic metal-rich, acidic environments

(Schonknecht, Chen et al. 2013)

Bacteria

Red alga Porphyridium purpureum

Non-plastid functions encoded in nuclear genome

(Qiu, Yoon et al. 2013)

Actinobacteria, proteobacteria, archaea

Chromalveolates (dinoflagellates of the genera Karenia and Karlodinium)

Energy metabolism, sugar and amino acid metabolism, cell membrane biosynthesis, substrate transport, DNA repair

(Nosenko and Bhattacharya 2007)

Proteobacteria, cyanobacteria and archaea

Diatom Phaeodactylum tricornutum

7.5% of genetic loci (784 loci); organic carbon and nitrogen utilization (xylanases and glucanases, prismane, carbon-nitrogen hydrolase, amidohydrolase), diatom urea cycle (carbamoyl transferase, carbamate kinase, ornithine cyclodeaminase) and polyamine metabolism related to diatom cell wall silicification (S-adenosylmethionine (SAM)-dependent decarboxylases and methyltransferases); also cell wall component synthesis, unorthodox DNA replication, repair and recombination mechanisms

(Bowler, Allen et al. 2008)

Bacteria, archaea

Rumen ciliates

Catabolism of complex carbohydrates

(Ricard, McEwan et al. 2006)

Actinobacteria

Plant pathogenic fungal Phytophthora species

Cutinase

(Belbahri, Calmin et al. 2008)

Bacteria

Fish ciliate scuticociliatosis pathogen Pseudocohnilembus persalinus

Cell adhesion, hemolysis and heme utilization

(Xiong, Wang et al. 2015)

Bacteria, eukaryotes Dictyostelium

discoideum,

Entamoeba histolytica,

Gibberella zeae,

Mastigamoeba balamuthi

 

Diplomonad fish parasite Spironucleus salmonicida

Amino acid metabolism, DNA repair, protein folding, membrane transport, glycolysis/gluconeogenesis, glyoxylate and dicarboxylate metabolism, pentose phosphate pathway, pyruvate metabolism, starch and sucrose metabolism, nitrogen metabolism, oxidative phosphorylation, purine and pyrimidine metabolism

 

(Andersson, Sjogren et al. 2007)

β,γ-Proteobacteria, Chlamydiae, other bacteria

Red alga Cyanidioschyzon

Amino acid, vitamin, lipid, porphyrin biosynthesis; ATP/ADP transport; RNA processing, translation

(Huang and Gogarten 2008)

Arthrobacter

Ascomycete fungi Penicillium canescens and Scopulariopsis sp

Beta-glucuronidase (enables utilization of glucuronides in vertebrate urine)

(Wenzl, Wong et al. 2005)

Rumen bacteria Fibrobacter succinogenes

Rumen fungus Orpinomyces joyonii

Endoglucanase (polysaccharide digestion)

(Garcia-Vallve, Romeu et al. 2000)

Bacteria

Eukaryotic unicellular parasites (Entamoeba histolytica, E. dispar, Trichomonas vaginalis, Giardia lamblia, Trypanosoma brucei, T. cruzi, Plasmodium falciparum)

Amino acid, sugar, nucleotide, lipid, and, energy metabolism, host glycan degradation, vitamin and membrane biosynthesis, translation

(Loftus, Anderson et al. 2005; Alsmark, Sicheritz-Ponten et al. 2009; Alsmark, Foster et al. 2013; Strese, Backlund et al. 2014; Hirt, Alsmark et al. 2015)

Eukaryote microbe–eukaryote microbe (Andersson 2009; Andersson 2009; Soanes and Richards 2014)

Phytopathogenic fungi in genera Magnaporthiopsis  or Colletotrichum

Phytopathogenic fungi in genera Magnaporthiopsis  or Colletotrichum

33-90 horizontally transferred loci enriched for plant cell wall degrading enzymes

(Qiu, Cai et al. 2016)

Fungi

Plant parasitic oomycetes, e.g., Phytophthora ramorum

Secreted proteins for plant cell wall digestion, resisting plant defenses, effector functions

(Richards, Soanes et al. 2011)

Filamentous plant pathogenic Ascomycete fungus Magnaporthe grisea

Filamentous plant Oomycete pathogen Phytophthora sp.

Sugar-transporter, purine permease, extracellular dioxygenase/Protocatechuate 3,4-dioxygenase β-subunit, aldose 1-epimerase (osmotropic lifestyle)

(Richards, Dacks et al. 2006)

Fungal pathogen Stagonospora nodorum

Fungal pathogen Pyrenophora tritici-repentis

ToxA virulence factor, extends host range

(Mehrabi, Bahkali et al. 2011)

Algae, bacteria

Choanoflagellate Monosiga brevicollis

405 genetic loci (4.4% nuclear genome); carbohydrate and amino acid metabolism, 45 transporters, responses to oxidative, osmotic, antibiotic, or heavy metal stresses, biosynthesis of vitamins C and K12, porphyrins and phospholipids.

(Nedelcu, Miles et al. 2008) (Yue, Sun et al. 2013) (Tucker 2013) (Sun, Yang et al. 2010)

Prokaryote-animal (Dunning Hotopp 2011; Alegado and King 2014; Boto 2014)

Bacteria, likely including some related to marine species Vibrio campbellii, Desulfovibrio hydrothermalis, and Arcobacter nitrofigilis

Sponge Amphimedon queenslandica, a model metazoan ancestor (Srivastava, Simakov et al. 2010)

227 loci transferred, including metallopeptidase, carbohydrate metabolism, polymer degradation, transport, proteolysis, nitrogen metabolism, extracellular matrix biosynthesis

(Conaco, Tsoulfas et al. 2016)

Mainly bacteria, but also fungi, protists, and algae

Bdelloid rotifers

8-9% of genetic loci, including toxin degradation, biosynthesis of antioxidants and key metabolites, amino acid metabolism, non-ribosomal peptide synthetases

(Gladyshev, Meselson et al. 2008; Boschetti, Carr et al. 2012; Eyres, Boschetti et al. 2015)

Bacteria, fungi

Bdelloid rotifer, Adineta ricciae

16 cellulolytic enzymes

(Szydlowski, Boschetti et al. 2015)

Bacteria

Sponge Astrosclera willeyana

Biomineralization

(Jackson, Macis et al. 2011)

Bacteria

Starlet sea anemone, Nematostella vectensis

Shikimic acid biosynthesis, glyoxylate cycle

(Kondrashov, Koonin et al. 2006; Starcevic, Akthar et al. 2008)

Bacteria

Cnidarian Hydra magnipapillata

Carbohydrate, lipid, nucleotide, amino acid, cofactor, vitamin and xenobiotic metabolism, glycan biosynthesis; transamination, methylation, and acetylation of sugars, polysaccharides, or glycoproteins; bacterial lipopolysaccharide (LPS) biosynthetic pathway

(Chapman, Kirkness et al. 2010)

Bacteria

Filarial nematode parasite Onchocerca flexuosa

Independence from Wolbachia endosymbionts; synthesis of riboflavin, heme and nucleotides; inosine monophosphate and uridine monophosphate biosynthesis

(McNulty, Foster et al. 2010; McNulty, Abubucker et al. 2012)

Bacteria, chiefly rhizobacteria, and fungi

Plant parasitic nematodes

Cellulose and phytopolymer digestion (multiple transfers to distinct nematode lineages), B vitamin biosynthesis, plant resistance-breaking effector proteins

(Bird, Opperman et al. 2003; Craig, Bekal et al. 2008; Opperman, Bird et al. 2008; Craig, Bekal et al. 2009; Mitreva, Smant et al. 2009; Danchin 2011; Haegeman, Jones et al. 2011; Mayer, Schuster et al. 2011; Scholl and Bird 2011; Paganini, Campan-Fournier et al. 2012; Eves-van den Akker, Laetsch et al. 2016)

Bacteria

Stick and Leaf Insects

Pectinases

(Shelomi, Danchin et al. 2016)

Bacteria

Phytophagous mites and Lepidoptera

Detoxification of plant defense cyanogenic glucosides

(Wybouw, Dermauw et al. 2014)

Bacteria and fungi

Asian longhorned beetle Anoplophora glabripennis

Enzymes involved in digestion of woody plant tissues and detoxification of plant allelochemicals

(McKenna, Scully et al. 2016)

Bacteria and fungi

Herbivorous arthropods (>20 distinct insect and chelicerate species)

Overcoming plant defenses, assimilation of intracellular plant metabolites, digestion of plant cell walls

(Wybouw, Pauchet et al. 2016)

Bacteria

Coffee berry borer beetle, Hypothenemus hampe

Glycosyl hydrolase (galactomannan, major coffee storage polymer, is the substrate)

(Acuna, Padilla et al. 2012)

Bacteria

Silkworm Bombyx mori and related Lepidoptera

Glycosyl hydrolase family, oxidoreductase family, and amino acid metabolism

(Li, Shen et al. 2011)

Archaea, Bacteria, Fungi, Protists, and Plants

26 animal species (4 Caenorhabditis, 12 Drosophila, and 10 primates)

Multiple metabolic functions (biosynthetic and degradative), innate immunity responses, antioxidant activities

(Crisp, Boschetti et al. 2015)

Bacteria

Arthropods, echinoderms, and vertebrates, including platypus and opossum, but not in splacental mammals

Glyoxylate cycle

(Kondrashov, Koonin et al. 2006)

Bacteria, Archaea, fungi and plants

Tardigrade Hypsibius dujardini (desiccation-resistant animals subject to oxidative stress)

17.5% of tardigrade genetic loci, particularly oxidative stress tolerance functions: catalases; DNA repair functions, including recombination proteins and translesion polymerases; polyamine biosynthesis; heat shock chaperones

(Boothby, Tenlen et al. 2015)

Bacteria

Urochordate Ciona intestinalis

Cellulose synthase

(Nakashima, Yamada et al. 2004)

Eukaryotic microbe-animal (Boto 2014)

Fungi

Pea aphid, two-spotted spider mite Tetranychus urticae

Carotenoid pigment biosynthesis, cyanate metabolism

(Moran and Jarvik 2010; Altincicek, Kovacs et al. 2012; Wybouw, Balabanidou et al. 2012)

Algae and other photosynthetic eukaryotes

Tunicate Ciona intestinalis

Molecule transport, cellular regulation and methylation signaling

(Ni, Yue et al. 2012)

Animal-eukaryotic microbe

Arthropod

Microsporidia intracellular parasites Encephalitozoon intestinalis and Encephalitozoon cuniculi

Purine nucleotide phosphorylase, folylpolyglutamate synthase

(Selman, Pombert et al. 2011; Pombert, Selman et al. 2012)

Prokaryote-plant (non-plastid)

Bacteria, Archaea, viruses, and sea anemones

Moss Physcomitrella patens (primitive land plant)

Xylem formation, plant defense, nitrogen recycling, plus biosynthesis of starch, polyamines, hormones and glutathione; actinoporin water stress adaptation

(Hoang, Cho et al. 2009; Yue, Hu et al. 2012)

Bacteria, fungi

Plants

Shikimate biosynthesis, phenylpropanoid pathway leading to synthesis of flavonoids and lignin, TAL transaldolase involved in vascular biogenesis

(Emiliani, Fondi et al. 2009; Yang, Zhou et al. 2015)

Eukarote microbe-plant

Fungi

Plants (Bryophyte Physcomitrella patens and Lycophyte Selaginella moellendorffil)

L-fucose permease sugar transporter, , membrane transporter, bifunctional iucA/iucC siderophore biosynthesis protein, phospholipase/carboxylesterase family protein. Both cases that involve HGT from a fungus to the bryophyte moss P. patens, the HGT is positioned next to a putative transposable element.

(Richards, Soanes et al. 2009)

Plant-microbe

Plants

Bacteria, fungi, amoebozoa

Expansins (plant cell-wall loosening proteins)

(Nikolaidis, Doran et al. 2014)

Plants

Fungi (Basidiomycete Laccaria bicolor, Chytrydiomycete Bhatrachochytrium dendrobatidis, Ascomycete Sclerotinia sclerotiorum)

Phosphate-responsive protein, zinc binding alcohol dehydrogenase, DUF239 domain protein, zinc finger (C2H2 type) protein

(Richards, Soanes et al. 2009)

Plant-plant (Bock 2009; Gao, Ren et al. 2014)

Parasitic plant (Cuscuta sp.)

Host plant (Plantago sp.)

Mitochondrial loci atp1, atp6 and matR

(Mower, Stefanovic et al. 2004; Mower, Stefanovic et al. 2010)

Tetrastigma rafflesiae Miq (obligate host)

Parasitic flowering plant Rafflesia cantleyi Solms-Laubach

Respiration, carbohydrate metabolism, mitochondrial translation, and protein turnover; mitochondrial sequences

(Davis and Wurdack 2004; Xi, Bradley et al. 2012) (Xi, Wang et al. 2013)

Grasses, Panicoideae genera

16 diploid barley (Hordeum) species

Ribosomal RNA (rDNA) sequences

(Mahelka, Krak et al. 2017)

Bryophyte hornworts

Fern

Novel chimeric photoreceptor--neochrome

(Li, Villarreal et al. 2014)

Andropogoneae, Cenchrinae (2 species), and Melinidinae C4 plants

Grass lineage Alloteropsis (4 independent transfers)

C4 photosynthesis activities (phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase)

(Christin, Edwards et al. 2012)

Plant

Plants (Amborella and others)

Mitochondrial genomes

(Bergthorsson, Adams et al. 2003; Bergthorsson, Richardson et al. 2004; Rice, Alverson et al. 2013; Gandini and Sanchez-Puerta 2017)

Papilionoid legume

Phelipanche aegyptiaca, parasitic species of family Orobanchaceae

albumin 1 KNOTTIN-like proteins

(Zhang, Fernandez-Aparicio et al. 2013)

Brassicaceae host plant

Root parasitic plant Orobanche aegyptiaca, shoot parasitic plant Cuscuta australis

Strictosidine synthase (independent transfers)

(Zhang, Qi et al. 2014)

Animal-animal

(Boto 2014)

 

 

Fish (herring or sea raven)

Rainbow smelt, Osmerus mordax

Type II anti-freeze protein

(Graham, Lougheed et al. 2008; Graham, Li et al. 2012)

Eukaryote-prokaryote  (Doolittle, Feng et al. 1990)

Eukaryotic cells (Impossible to identify because Legionella infects and grows in amoebae, protozoa, paramecium, macrophages, and many other eukaryotic cells)

Bacteria Legionella pneumophila

Eukaryote-like regulatory “effector” proteins injected in the course of infecting eukaryotic cells

(Lurie-Weinberger, Gomez-Valero et al. 2010; Gomez-Valero, Rusniok et al. 2011; de la Casa-Esperon 2012; Rolando and Buchrieser 2014; Burstein, Amaro et al. 2016)

Virus-prokaryote

Halovirus

Halobacterium salinarum (Archaea)

B-type DNA polymerase B1

(Filee, Forterre et al. 2002)

Virus-eukaryote

T3/T7 family bacteriophage

Ancestral eukaryote nuclear and mitochondrial genomes

A-type DNA polymerase Gamma of the mitochondrion (Opisthokonts only, metazoa and fungi), mitochondrial single-subunit RNA Polymerase (mt-ssRNAP), nucleus-encoded mitochondrial replicative helicase (all eukaryotes)

(Filee, Forterre et al. 2002; Filee and Forterre 2005; Shutt and Gray 2006)

Double-stranded RNA viruses (totiviruses and partitiviruses)

Eukaryote nuclear genomes (plants, arthropods, fungi, nematodes, and protozoa)

Capsid protein and RNA-dependent RNA polymerases

(Liu, Fu et al. 2010)

Circular single-stranded DNA viruses (geminiviruses, nanoviruses and circoviruses)

Eukaryotic nuclear genomes (plants, fungi, animals and protists)

Replication initiation protein (Rep)-related sequences

(Liu, Fu et al. 2011)

Cellular organisms-virus

Bacteria

Diverse temperate bacteriophages (bacterial viruses capable of insertion into “lysogen” bacterial genome as repressed prophage)

Expressed in lysogens: DNA adenine methylase, DNA cytosine methylase, porin (outer membrane transport), mammalian serum resistance, phage attack resistance, improved survival in Peyer's patches, mammalian cell binding, superoxide dismutase (lysogen more virulent in mice), mammalian cell ruffling and cell invasion, Shiga-like toxin (kills mammalian cells by damaging rRNA)

(Hendrix, Lawrence et al. 2000)

Bacteria (primarily, endosymbionts and parasites), bacteriophages, protists, animals

Nucleocytoplasmic large DNA viruses (NCLDVs), including Poxviruses and Iridoviruses infecting insects and vertebrates, Mimiviruses and Phycodnaviruses infecting amoebae, protists and algae

Small and large subunit rDNAs, DNA polymerase, two subunits of the DNA-dependent RNA polymerase, and two subunits of the ribonucleotide reductase, DNA ligase, dUTPase, serine/threonine kinase, thymidine kinase, ribonucleotide reductase, virus-specific signaling and regulatory domains, ubiquitin signaling; defenses against apoptosis, immune response (the MHC class I, interleukin-10, interleukin-24, interleukin-18, the interferon gamma receptor, and tumor necrosis factor receptor II), including growth factors and potential inhibitors of cytokine signaling, peptidases; glutaredoxin and glutathione peroxidase involved in resistance of cells to oxidative stress.

(Tidona and Darai 2000; Hughes and Friedman 2005; Iyer, Balaji et al. 2006; Filee, Siguier et al. 2007; Filee, Pouget et al. 2008; Colson and Raoult 2010; Aherfi, Colson et al. 2016)

Mammal

Influenza virus

28S rDNA insert in hemagglutinin sequence increases pathogenicity

(Becker 2000)

Gamma-proteobacteria and insects (viral hosts)

Baculovirus

DNA ligase, ribonucleotide reductase 1, SNF2 global transactivator, inhibitor of apoptosis, chitinase, and UDP-glucosyltransferase

(Hughes and Friedman 2003)

Marine phytoplankton prasinophytes

Prasinovirus

Glycosyltransferases, methyltransferases and amino acid synthesis enzymes

(Weynberg, Allen et al. 2017)






 

 

REFERENCES

 

Acuna, R., B. E. Padilla, et al. (2012). "Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee." Proc Natl Acad Sci U S A 109(11): 4197-4202. http://www.ncbi.nlm.nih.gov/pubmed/22371593.

Aherfi, S., P. Colson, et al. (2016). "Giant Viruses of Amoebas: An Update." Front Microbiol 7: 349. http://www.ncbi.nlm.nih.gov/pubmed/27047465.

Alegado, R. A. and N. King (2014). "Bacterial Influences on Animal Origins." Cold Spring Harb Perspect Biol. http://www.ncbi.nlm.nih.gov/pubmed/25280764.

Alsmark, C., P. G. Foster, et al. (2013). "Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes." Genome Biol 14(2): R19. http://www.ncbi.nlm.nih.gov/pubmed/23442822.

Alsmark, U. C., T. Sicheritz-Ponten, et al. (2009). "Horizontal gene transfer in eukaryotic parasites: a case study of Entamoeba histolytica and Trichomonas vaginalis." Methods Mol Biol 532: 489-500. http://www.ncbi.nlm.nih.gov/pubmed/19271203.

Altincicek, B., J. L. Kovacs, et al. (2012). "Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae." Biol Lett 8(2): 253-257. http://www.ncbi.nlm.nih.gov/pubmed/21920958.

Andersson, J. O. (2009). "Gene transfer and diversification of microbial eukaryotes." Annu Rev Microbiol 63: 177-193. http://www.ncbi.nlm.nih.gov/pubmed/19575565.

Andersson, J. O. (2009). "Horizontal gene transfer between microbial eukaryotes." Methods Mol Biol 532: 473-487. http://www.ncbi.nlm.nih.gov/pubmed/19271202.

Andersson, J. O., A. M. Sjogren, et al. (2007). "A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution." BMC Genomics 8: 51. http://www.ncbi.nlm.nih.gov/pubmed/17298675.

Becker, Y. (2000). "Evolution of viruses by acquisition of cellular RNA or DNA nucleotide sequences and genes: an introduction." Virus Genes 21(1-2): 7-12. http://www.ncbi.nlm.nih.gov/pubmed/11022785.

Belbahri, L., G. Calmin, et al. (2008). "Evolution of the cutinase gene family: evidence for lateral gene transfer of a candidate Phytophthora virulence factor." Gene 408(1-2): 1-8. http://www.ncbi.nlm.nih.gov/pubmed/18024004.

Bergthorsson, U., K. L. Adams, et al. (2003). "Widespread horizontal transfer of mitochondrial genes in flowering plants." Nature 424(6945): 197-201. http://www.ncbi.nlm.nih.gov/pubmed/12853958.

Bergthorsson, U., A. O. Richardson, et al. (2004). "Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella." Proc Natl Acad Sci U S A 101(51): 17747-17752. http://www.ncbi.nlm.nih.gov/pubmed/15598737.

Bird, D. M., C. H. Opperman, et al. (2003). "Interactions between bacteria and plant-parasitic nematodes: now and then." Int J Parasitol 33(11): 1269-1276. http://www.ncbi.nlm.nih.gov/pubmed/13678641.

Bock, R. (2009). "The give-and-take of DNA: horizontal gene transfer in plants." Trends Plant Sci. http://www.ncbi.nlm.nih.gov/pubmed/19910236.

Boothby, T. C., J. R. Tenlen, et al. (2015). "Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade." Proc Natl Acad Sci U S A. http://www.ncbi.nlm.nih.gov/pubmed/26598659.

Boschetti, C., A. Carr, et al. (2012). "Biochemical diversification through foreign gene expression in bdelloid rotifers." PLoS Genet 8(11): e1003035. http://www.ncbi.nlm.nih.gov/pubmed/23166508.

Boto, L. (2014). "Horizontal gene transfer in the acquisition of novel traits by metazoans." Proc Biol Sci 281(1777): 20132450. http://www.ncbi.nlm.nih.gov/pubmed/24403327.

Bowler, C., A. E. Allen, et al. (2008). "The Phaeodactylum genome reveals the evolutionary history of diatom genomes." Nature 456(7219): 239-244. http://www.ncbi.nlm.nih.gov/pubmed/18923393.

Burstein, D., F. Amaro, et al. (2016). "Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires." Nat Genet 48(2): 167-175. http://www.ncbi.nlm.nih.gov/pubmed/26752266.

Chapman, J. A., E. F. Kirkness, et al. (2010). "The dynamic genome of Hydra." Nature 464(7288): 592-596. http://www.ncbi.nlm.nih.gov/pubmed/20228792.

Christin, P. A., E. J. Edwards, et al. (2012). "Adaptive evolution of C(4) photosynthesis through recurrent lateral gene transfer." Curr Biol 22(5): 445-449. http://www.ncbi.nlm.nih.gov/pubmed/22342748.

Colson, P. and D. Raoult (2010). "Gene repertoire of amoeba-associated giant viruses." Intervirology 53(5): 330-343. http://www.ncbi.nlm.nih.gov/pubmed/20551685.

Conaco, C., P. Tsoulfas, et al. (2016). "Detection of Prokaryotic Genes in the Amphimedon queenslandica Genome." PLoS One 11(3): e0151092. http://www.ncbi.nlm.nih.gov/pubmed/26959231.

Craig, J. P., S. Bekal, et al. (2008). "Analysis of a horizontally transferred pathway involved in vitamin B6 biosynthesis from the soybean cyst nematode Heterodera glycines." Mol Biol Evol 25(10): 2085-2098. http://www.ncbi.nlm.nih.gov/pubmed/18586696.

Craig, J. P., S. Bekal, et al. (2009). "Evidence for horizontally transferred genes involved in the biosynthesis of vitamin B(1), B(5), and B(7) in Heterodera glycines." J Nematol 41(4): 281-290. http://www.ncbi.nlm.nih.gov/pubmed/22736827.

Crisp, A., C. Boschetti, et al. (2015). "Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes." Genome Biol 16(1): 50. http://www.ncbi.nlm.nih.gov/pubmed/25785303.

Da Lage, J. L., M. Binder, et al. (2013). "Gene make-up: rapid and massive intron gains after horizontal transfer of a bacterial alpha-amylase gene to Basidiomycetes." BMC Evol Biol 13: 40. http://www.ncbi.nlm.nih.gov/pubmed/23405862.

Danchin, E. G. (2011). "What Nematode genomes tell us about the importance of horizontal gene transfers in the evolutionary history of animals." Mob Genet Elements 1(4): 269-273. http://www.ncbi.nlm.nih.gov/pubmed/22545237.

Davis, C. C. and K. J. Wurdack (2004). "Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales." Science 305(5684): 676-678. http://www.ncbi.nlm.nih.gov/pubmed/15256617.

de la Casa-Esperon, E. (2012). "Horizontal transfer and the evolution of host-pathogen interactions." Int J Evol Biol 2012: 679045. http://www.ncbi.nlm.nih.gov/pubmed/23227424.

Deppenmeier, U., A. Johann, et al. (2002). "The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea." J Mol Microbiol Biotechnol 4(4): 453-461. http://www.ncbi.nlm.nih.gov/pubmed/12125824.

Deschamps, P., Y. Zivanovic, et al. (2014). "Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota." Genome Biol Evol 6(7): 1549-1563. http://www.ncbi.nlm.nih.gov/pubmed/24923324.

Doolittle, R. F., D. F. Feng, et al. (1990). "A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote." J Mol Evol 31(5): 383-388. http://www.ncbi.nlm.nih.gov/pubmed/2124629.

Dunning Hotopp, J. C. (2011). "Horizontal gene transfer between bacteria and animals." Trends Genet 27(4): 157-163. http://www.ncbi.nlm.nih.gov/pubmed/21334091.

Emiliani, G., M. Fondi, et al. (2009). "A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land." Biol Direct 4: 7. http://www.ncbi.nlm.nih.gov/pubmed/19220881.

Eves-van den Akker, S., D. R. Laetsch, et al. (2016). "The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence." Genome Biol 17(1): 124. http://www.ncbi.nlm.nih.gov/pubmed/27286965.

Eyres, I., C. Boschetti, et al. (2015). "Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats." BMC Biol 13(1): 90. http://www.ncbi.nlm.nih.gov/pubmed/26537913.

Filee, J. and P. Forterre (2005). "Viral proteins functioning in organelles: a cryptic origin?" Trends Microbiol 13(11): 510-513. http://www.ncbi.nlm.nih.gov/pubmed/16157484.

Filee, J., P. Forterre, et al. (2002). "Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins." J Mol Evol 54(6): 763-773. http://www.ncbi.nlm.nih.gov/pubmed/12029358.

Filee, J., N. Pouget, et al. (2008). "Phylogenetic evidence for extensive lateral acquisition of cellular genes by Nucleocytoplasmic large DNA viruses." BMC Evol Biol 8: 320. http://www.ncbi.nlm.nih.gov/pubmed/19036122.

Filee, J., P. Siguier, et al. (2007). "I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses." Trends Genet 23(1): 10-15. http://www.ncbi.nlm.nih.gov/pubmed/17109990.

Gandini, C. L. and M. V. Sanchez-Puerta (2017). "Foreign Plastid Sequences in Plant Mitochondria are Frequently Acquired Via Mitochondrion-to-Mitochondrion Horizontal Transfer." Sci Rep 7: 43402. http://www.ncbi.nlm.nih.gov/pubmed/28262720.

Gao, C., X. Ren, et al. (2014). "Horizontal gene transfer in plants." Funct Integr Genomics 14(1): 23-29. http://www.ncbi.nlm.nih.gov/pubmed/24132513.

Garcia-Vallve, S., A. Romeu, et al. (2000). "Horizontal gene transfer of glycosyl hydrolases of the rumen fungi." Mol Biol Evol 17(3): 352-361. http://www.ncbi.nlm.nih.gov/pubmed/10723736.

Garushyants, S. K., M. D. Kazanov, et al. (2015). "Horizontal gene transfer and genome evolution in Methanosarcina." BMC Evol Biol 15: 102. http://www.ncbi.nlm.nih.gov/pubmed/26044078.

Gladyshev, E. A., M. Meselson, et al. (2008). "Massive horizontal gene transfer in bdelloid rotifers." Science 320(5880): 1210-1213. http://www.ncbi.nlm.nih.gov/pubmed/18511688.

Gomez-Valero, L., C. Rusniok, et al. (2011). "Comparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactions." Front Microbiol 2: 208. http://www.ncbi.nlm.nih.gov/pubmed/22059087.

Graham, L. A., J. Li, et al. (2012). "Smelt was the likely beneficiary of an antifreeze gene laterally transferred between fishes." BMC Evol Biol 12: 190. http://www.ncbi.nlm.nih.gov/pubmed/23009612.

Graham, L. A., S. C. Lougheed, et al. (2008). "Lateral transfer of a lectin-like antifreeze protein gene in fishes." PLoS One 3(7): e2616. http://www.ncbi.nlm.nih.gov/pubmed/18612417.

Groussin, M., B. Boussau, et al. (2016). "Gene Acquisitions from Bacteria at the Origins of Major Archaeal Clades Are Vastly Overestimated." Mol Biol Evol 33(2): 305-310. http://www.ncbi.nlm.nih.gov/pubmed/26541173.

Haegeman, A., J. T. Jones, et al. (2011). "Horizontal gene transfer in nematodes: a catalyst for plant parasitism?" Mol Plant Microbe Interact 24(8): 879-887. http://www.ncbi.nlm.nih.gov/pubmed/21539433.

Hendrix, R. W., J. G. Lawrence, et al. (2000). "The origins and ongoing evolution of viruses." Trends Microbiol 8(11): 504-508. http://www.ncbi.nlm.nih.gov/pubmed/11121760.

Hirt, R. P., C. Alsmark, et al. (2015). "Lateral gene transfers and the origins of the eukaryote proteome: a view from microbial parasites." Curr Opin Microbiol 23: 155-162. http://www.ncbi.nlm.nih.gov/pubmed/25483352.

Hoang, Q. T., S. H. Cho, et al. (2009). "An actinoporin plays a key role in water stress in the moss Physcomitrella patens." New Phytol 184(2): 502-510. http://www.ncbi.nlm.nih.gov/pubmed/19674339.

Huang, J. and J. P. Gogarten (2008). "Concerted gene recruitment in early plant evolution." Genome Biol 9(7): R109. http://www.ncbi.nlm.nih.gov/pubmed/18611267.

Hughes, A. L. and R. Friedman (2003). "Genome-wide survey for genes horizontally transferred from cellular organisms to baculoviruses." Mol Biol Evol 20(6): 979-987. http://www.ncbi.nlm.nih.gov/pubmed/12716988.

Hughes, A. L. and R. Friedman (2005). "Poxvirus genome evolution by gene gain and loss." Mol Phylogenet Evol 35(1): 186-195. http://www.ncbi.nlm.nih.gov/pubmed/15737590.

Iyer, L. M., S. Balaji, et al. (2006). "Evolutionary genomics of nucleo-cytoplasmic large DNA viruses." Virus Res 117(1): 156-184. http://www.ncbi.nlm.nih.gov/pubmed/16494962.

Jackson, D. J., L. Macis, et al. (2011). "A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy." BMC Evol Biol 11: 238. http://www.ncbi.nlm.nih.gov/pubmed/21838889.

Kondrashov, F. A., E. V. Koonin, et al. (2006). "Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation." Biol Direct 1: 31. http://www.ncbi.nlm.nih.gov/pubmed/17059607.

Koonin, E. V. (2016). "Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions." F1000Res 5. http://www.ncbi.nlm.nih.gov/pubmed/27508073.

Li, F. W., J. C. Villarreal, et al. (2014). "Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns." Proc Natl Acad Sci U S A 111(18): 6672-6677. http://www.ncbi.nlm.nih.gov/pubmed/24733898.

Li, Z. W., Y. H. Shen, et al. (2011). "Pathogen-origin horizontally transferred genes contribute to the evolution of Lepidopteran insects." BMC Evol Biol 11: 356. http://www.ncbi.nlm.nih.gov/pubmed/22151541.

Liu, H., Y. Fu, et al. (2010). "Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes." J Virol 84(22): 11876-11887. http://www.ncbi.nlm.nih.gov/pubmed/20810725.

Liu, H., Y. Fu, et al. (2011). "Widespread horizontal gene transfer from circular single-stranded DNA viruses to eukaryotic genomes." BMC Evol Biol 11: 276. http://www.ncbi.nlm.nih.gov/pubmed/21943216.

Loftus, B., I. Anderson, et al. (2005). "The genome of the protist parasite Entamoeba histolytica." Nature 433(7028): 865-868. http://www.ncbi.nlm.nih.gov/pubmed/15729342.

Lopez-Garcia, P., Y. Zivanovic, et al. (2015). "Bacterial gene import and mesophilic adaptation in archaea." Nat Rev Microbiol 13(7): 447-456. http://www.ncbi.nlm.nih.gov/pubmed/26075362.

Lurie-Weinberger, M. N., L. Gomez-Valero, et al. (2010). "The origins of eukaryotic-like proteins in Legionella pneumophila." Int J Med Microbiol 300(7): 470-481. http://www.ncbi.nlm.nih.gov/pubmed/20537944.

Mahelka, V., K. Krak, et al. (2017). "Multiple horizontal transfers of nuclear ribosomal genes between phylogenetically distinct grass lineages." Proc Natl Acad Sci U S A 114(7): 1726-1731. http://www.ncbi.nlm.nih.gov/pubmed/28137844.

Mallet, L. V., J. Becq, et al. (2010). "Whole genome evaluation of horizontal transfers in the pathogenic fungus Aspergillus fumigatus." BMC Genomics 11: 171. http://www.ncbi.nlm.nih.gov/pubmed/20226043.

Marcet-Houben, M. and T. Gabaldon (2009). "Acquisition of prokaryotic genes by fungal genomes." Trends Genet 26(1): 5-8. http://www.ncbi.nlm.nih.gov/pubmed/19969385.

Mayer, W. E., L. N. Schuster, et al. (2011). "Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover." BMC Evol Biol 11: 13. http://www.ncbi.nlm.nih.gov/pubmed/21232122.

McKenna, D. D., E. D. Scully, et al. (2016). "Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface." Genome Biol 17(1): 227. http://www.ncbi.nlm.nih.gov/pubmed/27832824.

McNulty, S. N., S. Abubucker, et al. (2012). "Transcriptomic and proteomic analyses of a Wolbachia-free filarial parasite provide evidence of trans-kingdom horizontal gene transfer." PLoS One 7(9): e45777. http://www.ncbi.nlm.nih.gov/pubmed/23049857.

McNulty, S. N., J. M. Foster, et al. (2010). "Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer." PLoS One 5(6): e11029. http://www.ncbi.nlm.nih.gov/pubmed/20543958.

Mehrabi, R., A. H. Bahkali, et al. (2011). "Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range." FEMS Microbiol Rev 35(3): 542-554. http://www.ncbi.nlm.nih.gov/pubmed/21223323.

Mitreva, M., G. Smant, et al. (2009). "Role of horizontal gene transfer in the evolution of plant parasitism among nematodes." Methods Mol Biol 532: 517-535. http://www.ncbi.nlm.nih.gov/pubmed/19271205.

Moran, N. A. and T. Jarvik (2010). "Lateral transfer of genes from fungi underlies carotenoid production in aphids." Science 328(5978): 624-627. http://www.ncbi.nlm.nih.gov/pubmed/20431015.

Mower, J. P., S. Stefanovic, et al. (2010). "Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes." BMC Biol 8: 150. http://www.ncbi.nlm.nih.gov/pubmed/21176201.

Mower, J. P., S. Stefanovic, et al. (2004). "Plant genetics: gene transfer from parasitic to host plants." Nature 432(7014): 165-166. http://www.ncbi.nlm.nih.gov/pubmed/15538356.

Nakashima, K., L. Yamada, et al. (2004). "The evolutionary origin of animal cellulose synthase." Dev Genes Evol 214(2): 81-88. http://www.ncbi.nlm.nih.gov/pubmed/14740209.

Nedelcu, A. M., I. H. Miles, et al. (2008). "Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-related genes of algal origin in the closest unicellular relatives of animals." J Evol Biol 21(6): 1852-1860. http://www.ncbi.nlm.nih.gov/pubmed/18717747.

Nelson-Sathi, S., T. Dagan, et al. (2012). "Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea." Proc Natl Acad Sci U S A 109(50): 20537-20542. http://www.ncbi.nlm.nih.gov/pubmed/23184964.

Nelson-Sathi, S., F. L. Sousa, et al. (2015). "Origins of major archaeal clades correspond to gene acquisitions from bacteria." Nature 517: 77–80. http://www.ncbi.nlm.nih.gov/pubmed/25317564.

Ni, T., J. Yue, et al. (2012). "Ancient gene transfer from algae to animals: mechanisms and evolutionary significance." BMC Evol Biol 12: 83. http://www.ncbi.nlm.nih.gov/pubmed/22690978.

Nikolaidis, N., N. Doran, et al. (2014). "Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion." Mol Biol Evol 31(2): 376-386. http://www.ncbi.nlm.nih.gov/pubmed/24150040.

Nosenko, T. and D. Bhattacharya (2007). "Horizontal gene transfer in chromalveolates." BMC Evol Biol 7: 173. http://www.ncbi.nlm.nih.gov/pubmed/17894863.

Opperman, C. H., D. M. Bird, et al. (2008). "Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism." Proc Natl Acad Sci U S A 105(39): 14802-14807. http://www.ncbi.nlm.nih.gov/pubmed/18809916.

Paganini, J., A. Campan-Fournier, et al. (2012). "Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes." PLoS One 7(11): e50875. http://www.ncbi.nlm.nih.gov/pubmed/23226415.

Pombert, J. F., M. Selman, et al. (2012). "Gain and loss of multiple functionally related, horizontally transferred genes in the reduced genomes of two microsporidian parasites." Proc Natl Acad Sci U S A 109(31): 12638-12643. http://www.ncbi.nlm.nih.gov/pubmed/22802648.

Qiu, H., G. Cai, et al. (2016). "Extensive horizontal gene transfers between plant pathogenic fungi." BMC Biol 14: 41. http://www.ncbi.nlm.nih.gov/pubmed/27215567.

Qiu, H., H. S. Yoon, et al. (2013). "Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes." Front Plant Sci 4: 366. http://www.ncbi.nlm.nih.gov/pubmed/24065973.

Ricard, G., N. R. McEwan, et al. (2006). "Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment." BMC Genomics 7: 22. http://www.ncbi.nlm.nih.gov/pubmed/16472398.

Rice, D. W., A. J. Alverson, et al. (2013). "Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella." Science 342(6165): 1468-1473. http://www.ncbi.nlm.nih.gov/pubmed/24357311.

Richards, T. A., J. B. Dacks, et al. (2006). "Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms." Curr Biol 16(18): 1857-1864. http://www.ncbi.nlm.nih.gov/pubmed/16979565.

Richards, T. A., D. M. Soanes, et al. (2009). "Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi." Plant Cell 21(7): 1897-1911. http://www.ncbi.nlm.nih.gov/pubmed/19584142.

Richards, T. A., D. M. Soanes, et al. (2011). "Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes." Proc Natl Acad Sci U S A 108(37): 15258-15263. http://www.ncbi.nlm.nih.gov/pubmed/21878562.

Rolando, M. and C. Buchrieser (2014). "Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell." Trends Cell Biol 24(12): 771-778. http://www.ncbi.nlm.nih.gov/pubmed/25012125.

Scholl, E. H. and D. M. Bird (2011). "Computational and phylogenetic validation of nematode horizontal gene transfer." BMC Biol 9: 9. http://www.ncbi.nlm.nih.gov/pubmed/21342537.

Schonknecht, G., W. H. Chen, et al. (2013). "Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote." Science 339(6124): 1207-1210. http://www.ncbi.nlm.nih.gov/pubmed/23471408.

Selman, M., J. F. Pombert, et al. (2011). "Acquisition of an animal gene by microsporidian intracellular parasites." Curr Biol 21(15): R576-577. http://www.ncbi.nlm.nih.gov/pubmed/21820617.

Shelomi, M., E. G. Danchin, et al. (2016). "Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects." Sci Rep 6: 26388. http://www.ncbi.nlm.nih.gov/pubmed/27210832.

Shutt, T. E. and M. W. Gray (2006). "Bacteriophage origins of mitochondrial replication and transcription proteins." Trends Genet 22(2): 90-95. http://www.ncbi.nlm.nih.gov/pubmed/16364493.

Soanes, D. and T. A. Richards (2014). "Horizontal gene transfer in eukaryotic plant pathogens." Annu Rev Phytopathol 52: 583-614. http://www.ncbi.nlm.nih.gov/pubmed/25090479.

Srivastava, M., O. Simakov, et al. (2010). "The Amphimedon queenslandica genome and the evolution of animal complexity." Nature 466(7307): 720-726. http://www.ncbi.nlm.nih.gov/pubmed/20686567.

Starcevic, A., S. Akthar, et al. (2008). "Enzymes of the shikimic acid pathway encoded in the genome of a basal metazoan, Nematostella vectensis, have microbial origins." Proc Natl Acad Sci U S A 105(7): 2533-2537. http://www.ncbi.nlm.nih.gov/pubmed/18268342.

Strese, A., A. Backlund, et al. (2014). "A recently transferred cluster of bacterial genes in Trichomonas vaginalis--lateral gene transfer and the fate of acquired genes." BMC Evol Biol 14: 119. http://www.ncbi.nlm.nih.gov/pubmed/24898731.

Sun, B. F., J. H. Xiao, et al. (2013). "Multiple interkingdom horizontal gene transfers in Pyrenophora and closely related species and their contributions to phytopathogenic lifestyles." PLoS One 8(3): e60029. http://www.ncbi.nlm.nih.gov/pubmed/23555871.

Sun, G., Z. Yang, et al. (2010). "Algal genes in the closest relatives of animals." Mol Biol Evol 27(12): 2879-2889. http://www.ncbi.nlm.nih.gov/pubmed/20627874.

Szydlowski, L., C. Boschetti, et al. (2015). "Multiple horizontally acquired genes from fungal and prokaryotic donors encode cellulolytic enzymes in the bdelloid rotifer Adineta ricciae." Gene 566(2): 125-137. http://www.ncbi.nlm.nih.gov/pubmed/25863176.

Tidona, C. A. and G. Darai (2000). "Iridovirus homologues of cellular genes--implications for the molecular evolution of large DNA viruses." Virus Genes 21(1-2): 77-81. http://www.ncbi.nlm.nih.gov/pubmed/11022791.

Tucker, R. P. (2013). "Horizontal gene transfer in choanoflagellates." J Exp Zool B Mol Dev Evol 320(1): 1-9. http://www.ncbi.nlm.nih.gov/pubmed/22997182.

Wenzl, P., L. Wong, et al. (2005). "A functional screen identifies lateral transfer of beta-glucuronidase (gus) from bacteria to fungi." Mol Biol Evol 22(2): 308-316. http://www.ncbi.nlm.nih.gov/pubmed/15483318.

Weynberg, K. D., M. J. Allen, et al. (2017). "Marine Prasinoviruses and Their Tiny Plankton Hosts: A Review." Viruses 9(3). http://www.ncbi.nlm.nih.gov/pubmed/28294997.

Wybouw, N., V. Balabanidou, et al. (2012). "A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change." Insect Biochem Mol Biol 42(12): 881-889. http://www.ncbi.nlm.nih.gov/pubmed/22960016.

Wybouw, N., W. Dermauw, et al. (2014). "A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning." Elife 3: e02365. http://www.ncbi.nlm.nih.gov/pubmed/24843024.

Wybouw, N., Y. Pauchet, et al. (2016). "Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory." Genome Biol Evol 8(6): 1785-1801. http://www.ncbi.nlm.nih.gov/pubmed/27307274.

Xi, Z., R. K. Bradley, et al. (2012). "Horizontal transfer of expressed genes in a parasitic flowering plant." BMC Genomics 13(1): 227. http://www.ncbi.nlm.nih.gov/pubmed/22681756.

Xi, Z., Y. Wang, et al. (2013). "Massive mitochondrial gene transfer in a parasitic flowering plant clade." PLoS Genet 9(2): e1003265. http://www.ncbi.nlm.nih.gov/pubmed/23459037.

Xiong, J., G. Wang, et al. (2015). "Genome of the facultative scuticociliatosis pathogen Pseudocohnilembus persalinus provides insight into its virulence through horizontal gene transfer." Sci Rep 5: 15470. http://www.ncbi.nlm.nih.gov/pubmed/26486372.

Yang, Z., Y. Zhou, et al. (2015). "Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development." New Phytol 206(2): 807-816. http://www.ncbi.nlm.nih.gov/pubmed/25420550.

Yue, J., X. Hu, et al. (2012). "Widespread impact of horizontal gene transfer on plant colonization of land." Nat Commun 3: 1152. http://www.ncbi.nlm.nih.gov/pubmed/23093189.

Yue, J., G. Sun, et al. (2013). "The scale and evolutionary significance of horizontal gene transfer in the choanoflagellate Monosiga brevicollis." BMC Genomics 14: 729. http://www.ncbi.nlm.nih.gov/pubmed/24156600.

Zhang, D., J. Qi, et al. (2014). "Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer." BMC Plant Biol 14: 19. http://www.ncbi.nlm.nih.gov/pubmed/24411025.

Zhang, Y., M. Fernandez-Aparicio, et al. (2013). "Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species." BMC Evol Biol 13: 48. http://www.ncbi.nlm.nih.gov/pubmed/23425243.