James A.
Shapiro |
CRISPRs
(Bolotin, Quinquis et al. 2005;
Haft, Selengut
et al. 2005; Makarova,
Grishin et al. 2006; Barrangou,
Fremaux et al. 2007; Andersson and
Banfield 2008; Beloglazova,
Brown et al. 2008; Brouns, Jore
et al. 2008; Carte, Wang et
al. 2008; Deveau,
Barrangou et al. 2008; Horvath,
Romero et al. 2008; Sorek, Kunin
et al. 2008; Vestergaard,
Shah et al. 2008; Horvath,
Coute-Monvoisin et al. 2009; Makarova, Wolf
et al. 2009; Narberhaus and
Vogel 2009; Rousseau,
Gonnet et al. 2009; Shah, Hansen
et al. 2009; van der Oost
and Brouns 2009; van der Oost,
Jore et al. 2009; van der Ploeg
2009; Wiedenheft,
Zhou et al. 2009; Garneau,
Dupuis et al. 2010; Haurwitz,
Jinek et al. 2010; Horvath and
Barrangou 2010; Marraffini and
Sontheimer 2010; Sorokin,
Gelfand et al. 2010; Sorokin,
Gelfand et al. 2010; Al-Attar,
Westra et al. 2011; Blower, Pei et
al. 2011; Deltcheva,
Chylinski et al. 2011; Garrett, Shah
et al. 2011; Garrett,
Vestergaard et al. 2011; Jore, Lundgren
et al. 2011; Makarova,
Aravind et al. 2011; Makarova, Haft
et al. 2011; Makarova, Wolf
et al. 2011; Semenova, Jore
et al. 2011; Terns and
Terns 2011; Wiedenheft,
Lander et al. 2011; Djordjevic,
Djordjevic et al. 2012; Bikard and
Marraffini 2013; Watanabe,
Nozawa et al. 2013)
REFERENCES
Al-Attar, S., E.
R. Westra, et al. (2011). "Clustered regularly interspaced
short palindromic repeats (CRISPRs): the hallmark of an
ingenious antiviral defense mechanism in prokaryotes." Biol
Chem 392(4):
277-289. http://www.ncbi.nlm.nih.gov/pubmed/21294681.
Andersson, A. F.
and J. F. Banfield (2008). "Virus population dynamics and
acquired virus resistance in natural microbial communities."
Science 320(5879):
1047-1050. http://www.ncbi.nlm.nih.gov/pubmed/18497291.
Barrangou, R., C.
Fremaux, et al. (2007). "CRISPR provides acquired resistance
against viruses in prokaryotes." Science 315(5819):
1709-1712. http://www.ncbi.nlm.nih.gov/pubmed/17379808.
Beloglazova, N.,
G. Brown, et al. (2008). "A novel family of
sequence-specific endoribonucleases associated with the
clustered regularly interspaced short palindromic repeats."
J Biol Chem 283(29):
20361-20371. http://www.ncbi.nlm.nih.gov/pubmed/18482976.
Bikard, D. and L.
A. Marraffini (2013). "Control of gene expression by
CRISPR-Cas systems." F1000Prime Rep 5: 47. http://www.ncbi.nlm.nih.gov/pubmed/24273648.
Blower, T. R., X.
Y. Pei, et al. (2011). "A processed noncoding RNA regulates
an altruistic bacterial antiviral system." Nat Struct
Mol Biol 18(2):
185-190. http://www.ncbi.nlm.nih.gov/pubmed/21240270.
Bolotin, A., B.
Quinquis, et al. (2005). "Clustered regularly interspaced
short palindrome repeats (CRISPRs) have spacers of
extrachromosomal origin." Microbiology 151(Pt 8):
2551-2561. http://www.ncbi.nlm.nih.gov/pubmed/16079334.
Brouns, S. J., M.
M. Jore, et al. (2008). "Small CRISPR RNAs guide antiviral
defense in prokaryotes." Science 321(5891):
960-964. http://www.ncbi.nlm.nih.gov/pubmed/18703739.
Carte, J., R.
Wang, et al. (2008). "Cas6 is an endoribonuclease that
generates guide RNAs for invader defense in prokaryotes." Genes
Dev 22(24):
3489-3496. http://www.ncbi.nlm.nih.gov/pubmed/19141480.
Deltcheva, E., K.
Chylinski, et al. (2011). "CRISPR RNA maturation by
trans-encoded small RNA and host factor RNase III." Nature
471(7340):
602-607. http://www.ncbi.nlm.nih.gov/pubmed/21455174.
Deveau, H., R.
Barrangou, et al. (2008). "Phage response to CRISPR-encoded
resistance in Streptococcus thermophilus." J Bacteriol
190(4):
1390-1400. http://www.ncbi.nlm.nih.gov/pubmed/18065545.
Djordjevic, M.,
M. Djordjevic, et al. (2012). "CRISPR transcript processing:
a mechanism for generating a large number of small
interfering RNAs." Biol Direct 7(1): 24. http://www.ncbi.nlm.nih.gov/pubmed/22849651.
Garrett, R. A.,
S. A. Shah, et al. (2011). "CRISPR-based immune systems of
the Sulfolobales: complexity and diversity." Biochem Soc
Trans 39(1):
51-57. http://www.ncbi.nlm.nih.gov/pubmed/21265746.
Garrett, R. A.,
G. Vestergaard, et al. (2011). "Archaeal CRISPR-based immune
systems: exchangeable functional modules." Trends
Microbiol 19(11):
549-556. http://www.ncbi.nlm.nih.gov/pubmed/21945420.
Haft, D. H., J.
Selengut, et al. (2005). "A guild of 45 CRISPR-associated
(Cas) protein families and multiple CRISPR/Cas subtypes
exist in prokaryotic genomes." PLoS Comput Biol 1(6): e60. http://www.ncbi.nlm.nih.gov/pubmed/16292354.
Haurwitz, R. E.,
M. Jinek, et al. (2010). "Sequence- and structure-specific
RNA processing by a CRISPR endonuclease." Science 329(5997):
1355-1358. http://www.ncbi.nlm.nih.gov/pubmed/20829488.
Horvath, P. and
R. Barrangou (2010). "CRISPR/Cas, the immune system of
bacteria and archaea." Science 327(5962):
167-170. http://www.ncbi.nlm.nih.gov/pubmed/20056882.
Horvath, P., A.
C. Coute-Monvoisin, et al. (2009). "Comparative analysis of
CRISPR loci in lactic acid bacteria genomes." Int J Food
Microbiol 131(1):
62-70. http://www.ncbi.nlm.nih.gov/pubmed/18635282.
Horvath, P., D.
A. Romero, et al. (2008). "Diversity, activity, and
evolution of CRISPR loci in Streptococcus thermophilus." J
Bacteriol 190(4):
1401-1412. http://www.ncbi.nlm.nih.gov/pubmed/18065539.
Jore, M. M., M.
Lundgren, et al. (2011). "Structural basis for CRISPR
RNA-guided DNA recognition by Cascade." Nat Struct Mol
Biol 18(5):
529-536. http://www.ncbi.nlm.nih.gov/pubmed/21460843.
Makarova, K. S.,
L. Aravind, et al. (2011). "Unification of Cas protein
families and a simple scenario for the origin and evolution
of CRISPR-Cas systems." Biol Direct 6: 38. http://www.ncbi.nlm.nih.gov/pubmed/21756346.
Makarova, K. S.,
N. V. Grishin, et al. (2006). "A putative
RNA-interference-based immune system in prokaryotes:
computational analysis of the predicted enzymatic machinery,
functional analogies with eukaryotic RNAi, and hypothetical
mechanisms of action." Biol Direct 1: 7. http://www.ncbi.nlm.nih.gov/pubmed/16545108.
Makarova, K. S.,
D. H. Haft, et al. (2011). "Evolution and classification of
the CRISPR-Cas systems." Nat Rev Microbiol 9(6): 467-477. http://www.ncbi.nlm.nih.gov/pubmed/21552286.
Makarova, K. S.,
Y. I. Wolf, et al. (2011). "Defense islands in bacterial and
archaeal genomes and prediction of novel defense systems." J
Bacteriol 193(21):
6039-6056. http://www.ncbi.nlm.nih.gov/pubmed/21908672.
Makarova, K. S.,
Y. I. Wolf, et al. (2009). "Prokaryotic homologs of
Argonaute proteins are predicted to function as key
components of a novel system of defense against mobile
genetic elements." Biol Direct 4(1): 29. http://www.ncbi.nlm.nih.gov/pubmed/19706170.
Marraffini, L. A.
and E. J. Sontheimer (2010). "CRISPR interference:
RNA-directed adaptive immunity in bacteria and archaea." Nat
Rev Genet 11(3):
181-190. http://www.ncbi.nlm.nih.gov/pubmed/20125085.
Narberhaus, F.
and J. Vogel (2009). "Regulatory RNAs in prokaryotes: here,
there and everywhere." Mol Microbiol 74(2): 261-269. http://www.ncbi.nlm.nih.gov/pubmed/19732342.
Rousseau, C., M.
Gonnet, et al. (2009). "CRISPI: a CRISPR interactive
database." Bioinformatics 25(24): 3317-3318.
http://www.ncbi.nlm.nih.gov/pubmed/19846435.
Semenova, E., M.
M. Jore, et al. (2011). "Interference by clustered regularly
interspaced short palindromic repeat (CRISPR) RNA is
governed by a seed sequence." Proc Natl Acad Sci U S A
108(25):
10098-10103. http://www.ncbi.nlm.nih.gov/pubmed/21646539.
Shah, S. A., N.
R. Hansen, et al. (2009). "Distribution of CRISPR spacer
matches in viruses and plasmids of crenarchaeal
acidothermophiles and implications for their inhibitory
mechanism." Biochem Soc Trans 37(Pt 1): 23-28.
http://www.ncbi.nlm.nih.gov/pubmed/19143596.
Sorek, R., V.
Kunin, et al. (2008). "CRISPR--a widespread system that
provides acquired resistance against phages in bacteria and
archaea." Nat Rev Microbiol 6(3): 181-186. http://www.ncbi.nlm.nih.gov/pubmed/18157154.
Sorokin, V. A.,
M. S. Gelfand, et al. (2010). "Evolutionary dynamics of
clustered irregularly interspaced short palindromic repeat
systems in the ocean metagenome." Appl Environ Microbiol
76(7):
2136-2144. http://www.ncbi.nlm.nih.gov/pubmed/20118362.
Sorokin, V. A.,
M. S. Gelfand, et al. (2010). "Evolutionary dynamics of
CRISPR systems in the Ocean metagenome." Appl Environ
Microbiol 76(7):
2136-2144. http://www.ncbi.nlm.nih.gov/pubmed/20118362.
Terns, M. P. and
R. M. Terns (2011). "CRISPR-based adaptive immune systems."
Curr Opin Microbiol 14(3): 321-327. http://www.ncbi.nlm.nih.gov/pubmed/21531607.
van der Oost, J.
and S. J. Brouns (2009). "RNAi: prokaryotes get in on the
act." Cell 139(5):
863-865. http://www.ncbi.nlm.nih.gov/pubmed/19945373.
van der Oost, J.,
M. M. Jore, et al. (2009). "CRISPR-based adaptive and
heritable immunity in prokaryotes." Trends Biochem Sci
34(8): 401-407.
http://www.ncbi.nlm.nih.gov/pubmed/19646880.
van der Ploeg, J.
R. (2009). "Analysis of CRISPR in Streptococcus mutans
suggests frequent occurrence of acquired immunity against
infection by M102-like bacteriophages." Microbiology
155(Pt 6):
1966-1976. http://www.ncbi.nlm.nih.gov/pubmed/19383692.
Vestergaard, G.,
S. A. Shah, et al. (2008). "Stygiolobus rod-shaped virus and
the interplay of crenarchaeal rudiviruses with the CRISPR
antiviral system." J Bacteriol 190(20):
6837-6845. http://www.ncbi.nlm.nih.gov/pubmed/18723627.
Watanabe, T., T.
Nozawa, et al. (2013). "CRISPR regulation of intraspecies
diversification by limiting IS transposition and
intercellular recombination." Genome Biol Evol 5(6): 1099-1114.
http://www.ncbi.nlm.nih.gov/pubmed/23661565.
Wiedenheft, B.,
G. C. Lander, et al. (2011). "Structures of the RNA-guided
surveillance complex from a bacterial immune system." Nature
477(7365):
486-489. http://www.ncbi.nlm.nih.gov/pubmed/21938068.
Wiedenheft, B.,
K. Zhou, et al. (2009). "Structural basis for DNase activity
of a conserved protein implicated in CRISPR-mediated genome
defense." Structure 17(6): 904-912. http://www.ncbi.nlm.nih.gov/pubmed/19523907.