Cognitive Aspects of genome function
Symposium on Neurobiological Correlates of Interpersonal Relations, Freiburg October 15, 2011

James A. Shapiro
University of Chicago

jsha@uchicago.edu, http://shapiro.bsd.uchicago.edu

“In the future, attention undoubtedly will be centered on the genome, with greater appreciation of its significance as a highly sensitive organ of the cell that monitors genomic activities and corrects common errors, senses unusual and unexpected events, and responds to them, often by restructuring the genome.”
Philosophical Debates about the Organization and Evolution of Living Cells

• In response to Paley’s “argument from design” for an intelligent Creator, Darwinists and neo-Darwinists insisted on the blind watchmaker rather than the operation of an engineering process (i.e. they explicitly excluded functional goals, design principles and self-evaluation).

• In the Mechanism vs. Vitalism debates of the 19th/20th Centuries (e.g. Driesch vs. Roux), purely hardwired explanations of life were adopted to avoid the need to accept some information-processing “vital force” to control growth and reproduction).
The basic argument

• Cells use cognitive processes (= action based on knowledge) in dealing with genomic information
• We know some of the molecules and mechanisms cells employ to gain & process knowledge relevant to genome action (sensing, signalling & computation by molecular networks)
• Cognitive functions affect both extracting information from and adding information to the genome (genome = Read-Write memory system)
• Cell cognition involved in all aspects of biological function, up to and including evolutionary change

Cognition in reading genomic data files: lactose utilization in E. coli

Diauxic Growth - a Cognitive Problem (Monod, 1942)

Synthesize lactose-metabolizing proteins when glucose is exhausted. How to sense glucose and lactose?

Cognition in reading the genome and growing the cell: yeast sexual arousal

Pheromone Response

Cognition in proofreading DNA: mismatch excision repair

Cognition in proofreading and repairing DNA: RecA sensing and the SOS response

Cognitive functions in cell cycle control

From *The Cell Cycle: Principles of Control* by David O Morgan

Cognition in cell cycle control: spindle orientation checkpoint in yeast

J. Lew and Daniel J. Burke.
THE SPINDLE ASSEMBLY AND SPINDLE POSITION CHECKPOINTS.
Decision-making in the DNA damage response
Cognition and decision-making in programmed cell death (apoptosis): Effect of cytokines on cell survival

Cognition in genome defense: Developing immunity against invading DNA

CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats)

Cognition in genome restructuring: Effect of starvation on araB-lacZ fusions


Cognition in genome restructuring: Stimuli that alter epigenetic control of natural genetic engineering* and elevate genome variability

• Chromosome breaks (McClintock, 1944)
• Pheromones, hormones & cytokines
• Starvation
• DNA damage (mutagens)
• Telomere erosion
• Antibiotics, Phenolics, Osmolites, Oxidants

• Pressure, Temperature, Wounding
• Protoplasting & growth in tissue culture
• Bacterial or fungal infection & endosymbiosis
• Changes in ploidy & DNA content (genome doubling)
• Hybridization (interspecific mating)

* Mediated by CRISPR-like functions in *Drosophila* and other animals.
Cognition in evolution: symbiogenesis (merging cell cycles) at key points in evolution

How cognition may work in evolution:
ecological disruption affecting epigenetic regulation, population structures and genome stability

- Ecological disruption ==> changes in population structures (depletion), food sources, adaptive needs, organismal behavior and infectious agents.
- Macroevolution triggered by starvation, cell fusions (abnormal infections) & interspecific hybridizations (WGDs) leading to major episodes of horizontal transfer, genome rearrangements and novel symbiotic associations.
- Establishment of new cellular and genome system architectures; complex novelties arising from WGD and network exaptation.
- Survival and proliferation of organisms with useful adaptive traits in depleted ecology; elimination of non-functional architectures; selection largely purifying.
- Microevolution by localized natural genetic engineering after ecological niches occupied (immune system model).